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Abstract

Reliable failure detection holds paramount importance in
safety-critical applications. Yet, neural networks are known
to produce overconfident predictions for misclassified sam-
ples. As a result, it remains a problematic matter as existing
confidence score functions rely on category-level signals, the
logits, to detect failures. This research introduces an inno-
vative strategy, leveraging human-level concepts for a dual
purpose: to reliably detect when a model fails and to trans-
parently interpret why. By integrating a nuanced array of sig-
nals for each category, our method enables a finer-grained as-
sessment of the model’s confidence. We present a simple yet
highly effective approach based on the ordinal ranking of con-
cept activation to the input image. Without bells and whistles,
our method significantly reduce the false positive rate across
diverse real-world image classification benchmarks, specifi-
cally by 3.7% on ImageNet and 9% on EuroSAT.

Introduction
Vision-language models have demonstrated impressive ca-
pability across diverse visual recognition domains (Radford
et al. 2021; Jia et al. 2021; Singh et al. 2021; Li et al. 2022,
2023). However, when it comes to safe deployment in high-
stake applications, it is of paramount importance for a model
to be self-aware of its own shortcomings. For instance, in
monitoring for natural disasters such as floods or wildfires,
the AI system must signal for human intervention upon en-
countering scenarios where its confidence is low. Such self-
awareness ensures that preemptive measures can be taken to
mitigate disaster impacts on communities and ecosystems.
Therefore, it is imperative not only to detect failures accu-
rately but also to understand the reasons behind them.

Traditional methods (Hendrycks and Gimpel 2016;
Granese et al. 2021; Zhu et al. 2023a,b; Liang, Li, and
Srikant 2018) rely on category-level information to detect
misclassifications, performing confidence estimation on the
class logits. However, neural networks are known to produce
overconfident predictions for misclassified samples due to
factors like spurious correlations (Arjovsky et al. 2019;
Sagawa et al. 2019), thus existing confidence scoring func-
tions (CSFs) fall short in such cases. Besides, the model
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confidence depicted through category-level information im-
pedes the ability for humans to interpret why it fails. To this
end, we ask the following question: “What other sources of
information can we leverage to enhance failure detection?”

We present a novel perspective on detecting failures by
leveraging human-level concepts, or visual attributes. With
the flexibility to incorporate free-form language to VLMs
(i.e. CLIP), we can represent a category with a set of prede-
fined concepts (Menon and Vondrick 2023; Oikarinen et al.
2023; Li, Ma, and Peng 2024a,b). Instead of only prompting
the model “Do you recognize a camel?”, we collectively ask
“Do you recognize humps on back?”, or “Do you recognize
shaggy coat?”. The purpose is to measure the model’s confi-
dence in the object’s detailed visual attributes in addition to
the holistic category. We thus achieve a more accurate con-
fidence estimate to detect failures more effectively (Fig. 1)

Ideally, a VLM that can recognize a image of a camel
should also recognize all the associated visual attributes,
such as humps on back, shaggy coat, etc. Such visual at-
tributes should yield higher confidence scores compared to
those associated with the absent categories. Conversely, if
the model shows high confidence in concepts from mul-
tiple unrelated categories at the same time, it could indi-
cate a failure in its recognition process. Based on such in-
tuition, we present a simple but effective approach using the
Ordinal Ranking of Concept Activation (ORCA) to detect
failures. Additionally, these human-understandable concepts
allow users to understand the reasons behind such failures,
thereby aiding them in refining the training process.

We rigorously validate our method’s efficacy in detect-
ing incorrect samples across both natural and remote sens-
ing image benchmarks, which mirror the complexity in real-
world scenarios. ORCA demonstrates a significant capabil-
ity to mitigate the issue of overly confident misclassifica-
tions. In summary, our contributions are threefold:

1. We leverage human-level concepts to detect when and in-
terpret why a model fails using vision-language models.

2. We present a simple but effective approach, called
ORCA, to estimate more reliable confidence via the or-
dinal ranking of the concepts’ activation.

3. We empirically demonstrate that the concept-based
methods enhance failure prediction performance across
a wide range of classification benchmarks.

ar
X

iv
:2

50
2.

05
27

5v
2 

 [
cs

.C
V

] 
 1

4 
A

pr
 2

02
5



Figure 1: Comparison between standard (MSP) and our approaches. MSP relies solely on class logits to predict failures, which
is problematic in detecting overconfident but incorrect predictions. To tackle this problem, we propose to deconstruct each
category into its associated human-level concepts for a finer-grained estimate of confidence.

Related Work
Failure Detection. Failure detection, or misclassification
detection, is a burgeoning area of research within the realm
of artificial intelligence. Detecting when machine learning
models produce incorrect or misleading predictions has sig-
nificant implications for safety, reliability, and transparency
in various domains. Existing research in this field falls into
two main categories: (1) retraining or fine-tuning of neu-
ral networks (Moon et al. 2020; Zhu et al. 2023a,b), and
(2) the design of novel confidence score functions (Granese
et al. 2021; Hendrycks and Gimpel 2016). The former ap-
proach involves retraining or fine-tuning neural networks
with specific objectives aimed at improving the model’s ca-
pability to recognize its own failures. Zhu et al. (Zhu et al.
2023b) employs a training objective that seeks flat minima to
mitigate overconfident predictions. While these approaches
have shown promise, they often require extensive compu-
tational resources and access to the entire model, which
may not be feasible for large VLMs. Researchers have also
turned their attention to the design of new CSFs (Granese
et al. 2021). Despite these efforts, the most robust CSF re-
mains the MSP (Jaeger et al. 2023). However, a downside of
category-level CSFs is their inability to detect overconfident
but incorrect predictions, which is problematic. In this work,
we deconstruct category-level into concept-level signals to
achieve a more nuanced estimate of the model’s confidence.

A closely related sub-field is confidence calibration (Min-
derer et al. 2021; LeVine et al. 2023; Mukhoti et al. 2020;
Pereyra et al. 2017), where the goal is to adjust a model’s
predicted probabilities to ensure that they accurately reflect
the true likelihood of those predictions being correct. How-
ever, Zhu et al. (Zhu et al. 2023b) has empirically shown
that calibration methods frequently yield no benefits or
even detrimentally affect failure prediction. Similarly, some
works (Jaeger et al. 2023; Bernhardt, Ribeiro, and Glocker
2022) also emphasizes the importance of confidence rank-
ing over confidence calibration in failure detection. Some
other related sub-fields are predictive uncertainty estima-
tion (Gal and Ghahramani 2016; Blundell et al. 2015; Lak-
shminarayanan, Pritzel, and Blundell 2017; Mukhoti et al.
2023), out-of-distribution detection (Zhu et al. 2023a; Liang,
Li, and Srikant 2018; Dinari and Freifeld 2022; Lee et al.

2018), open-set recognition (Vaze et al. 2022; Geng, Huang,
and Chen 2021) and selective classification (Geifman and
El-Yaniv 2017; Fisch, Jaakkola, and Barzilay 2022).

Human-level Concepts in Vision-Language Models.
Concept-based models (CBMs) aim to open the black box
of neural networks. Concept bottleneck networks are pio-
neers for interpretable neural networks, with each neuron in
the concept bottleneck layer representing a concept at the
human level (Koh et al. 2020; Yuksekgonul, Wang, and Zou
2022). With the flexibility to employ free language in vi-
sion language models, such as CLIP (Radford et al. 2021),
ALIGN (Jia et al. 2021), FLAVA (Singh et al. 2021), and
BLIP (Li et al. 2022, 2023), concepts of human level can be
naturally integrated into the prediction mechanism (Menon
and Vondrick 2023; Yang et al. 2022; Oikarinen et al. 2023).
This work can be viewed as a variant of CBMs for failure de-
tection, which has never been considered before. We show
the approach better predicts failures and, as a byproduct,
helps interpret why a model fails.

Backgrounds
Overview on Failure Detection. We consider failure de-
tection on the multi-class classification task. Let X ∈ Rd be
the input space and Y = {1, 2, . . . , C} be the label space,
where d is the dimension of the input vector. Given a data
set {(xi, yi)}Ni=1 with N data points independently sam-
pled from the joint probability distribution X × Y , a stan-
dard neural network f : X → Y outputs a probability dis-
tribution over the C categories. For an input x, f outputs
p̂ = P̂ (y|x; θ) as the class probabilities, where θ denotes
the network’s parameters. In the context of failure detection,
we consider a pair of functions (f, g), where g : F×X → R
is the confidence scoring function, and f ∈ F . With a pre-
defined threshold τ ∈ R+, the failure detection output is
defined as:

(f, g)(x) =

{
P̂ (y|x; θ), if g(f,x) ≥ τ

detect, otherwise.
(1)

Failure detection is initiated when g(f,x) falls below a
threshold τ . Ideally, a confidence scoring function should
output higher confidence scores for correct predictions and



lower confidence scores for incorrect predictions. Despite
efforts in designing CSFs, Jaeger et al. (Jaeger et al. 2023)
has shown that the standard Maximum Softmax Prediction
remains the best CSF across a wide range of datasets and
network architectures. Mathematically, MSP is defined as:

g(f,x) = max
c∈Y

P̂ (y = c|x; θ) (2)

which returns the maximum output signal after the softmax
activation function on the network output layer.
Failure Detection with VLM. CLIP (Radford et al. 2021),
a vision-language model, is pre-trained on a large-scale
dataset comprising of 400 million image-text pairs. CLIP
uses contrastive learning to align the image and text pairs.
During inference, we calculate the model’s logits as the co-
sine similarity score between the input image embedding
and the corresponding text embeddings. Given an input im-
age x, the embedding is denoted as fimg(x) ∈ Rm. In ad-
dition, C text labels represent the category names {tc}Cc=1,
where ftxt(tc) ∈ Rm are the embeddings and m ≪ d. For
each category, we calculate the corresponding logit as:

sc = 100×
fimg(x) · ftxt(tc)

∥fimg(x)∥∥ftxt(tc)∥
(3)

where ∥·∥ is the L2 norm. The softmax function then con-
verts the logits into probabilities:

p̂c =
exp(sc)∑C
j=1 exp(sj)

(4)

where p̂c ∈ p̂. f(x) = argmaxc∈Y p̂c is the prediction, and
g(f,x) = maxc∈Y p̂c can be regarded as the model confi-
dence for a given input x using MSP.

Methods
Traditional methods rely on the category-level signals to es-
timate the model’s confidence. This leads to unreliable confi-
dence estimate as neural networks are prone to overconfident
misclassification. To address this issue, we suggest exposing
the model to diverse viewpoints via human-level concepts.
Rather than inquiring about the model’s certainty regarding
an image being a camel, we also query its confidence re-
garding specific attributes like the presence of humps on the
camel’s back, a shaggy coat, etc.

Recent advancements in VLMs enable such integration
of human-level concepts as free-form language into the
pipeline (Menon and Vondrick 2023; Yang et al. 2022;
Oikarinen et al. 2023). In this section, we describe the
integration of the work by Menon and Vondrick (Menon
and Vondrick 2023) which employs concept aggregation to
establish a baseline concept-based method for failure de-
tection. Subsequently, we introduce ORCA, our novel ap-
proach that captures the interaction among concept activa-
tions through ordinal ranking, enhancing the reliability of
failure detection.

Human-Level Concepts for Failure Detection
Given K concepts per category, we define A as a col-
lection of all concepts, where |A| = C × K. We ob-
tain the vector of similarity scores (or logits), Sconc =

[s1,1, . . . , s1,K , s2,1, . . . , sC,K ], between the image embed-
ding and all the concepts using Eq. 3. DescCLIP then calcu-
lates the mean similarity score among all concepts for each
category c to retrieve the logits and output the prediction:

f(x) = argmaxc∈Y
1

K

K∑
k=1

sc,k (5)

Finally, we apply the softmax function (Eq. 4) on the log-
its to get the class probabilities and employ MSP to obtain
the model’s confidence score.

Ordinal Ranking of Concept Activation
DescCLIP’s concept aggregation leads to a coarse-grained
confidence estimation procedure. We propose a fine-grained
approach that models the interaction among concepts via or-
dinal ranking to estimate confidence more reliably.

Ideally, if a model is confident about predicting a cate-
gory ĉ then the concepts associated with ĉ should yield the
strongest activations. In other words, the similarity scores
of all concepts belonging to ĉ, {sĉ,k}Kk=1, should belong
to the top-K ranking. Conversely, we would see a mixture
of concepts from different categories in the top-K rank-
ing if the model is likely to make an incorrect prediction.
With such information, we can separate correct and incorrect
predictions more reliably. Next, we describe two variants
of our proposed method: baseline and rank-aware ORCA.
In brevity, the former builds upon simple counting mecha-
nisms, while the latter weighs the concept contributions to
the confidence estimate based on their ranks.

Baseline ORCA. We first sort Sconc in descending order and
retrieve the set of the top-K concepts, denoted as an ordered
set Atop-K . After that, we derive the confidence based on
the number of different categories whose concepts belong in
Atop-K . The rationale is straightforward: the model is at a
higher risk of failure as there are more categories featuring
in Atop-K . The prediction is determined as follows:

f(x) = argmaxc∈Y |Atop-K ∩ Ac|, (6)

where Ac denotes the set of concepts of an arbitrary cat-
egory c’s concepts, and |·| denotes the set cardinality. The
confidence of the prediction is the ratio between the num-
ber of the predicted category’s concepts appearing in Atop-K
over K:

g(f,x) =
|Atop-K ∩ Aĉ|

K
(7)

where ĉ = f(x) is the prediction. We dub this variant
ORCA-B in the text.
Rank-aware ORCA. While ORCA-B provides a funda-
mental approach, its reliance solely on rudimentary count-
ing mechanisms limits its ability to capture nuanced distinc-
tions. To enhance our approach, we introduce a rank-aware
variant that uses ordinal ranking information to deliver more
accurate failure detection. In detail, we construct a rank-
aware weight vector w where the value of each element is
proportional to the ordinal ranking. First, we define the ordi-
nal ranking vector r = [K,K − 1, . . . , 1] with K elements
in descending order. Then, we apply a logarithmic weighting
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Figure 2: Overview of the ORCA framework. We first prompt GPT-3.5 to construct the concept collection A. We then pass the
image and all the concepts into CLIP to retrieve the concept similarity scores, represented by the number above each bar, and
sort them in descending order. Based on the top-K responses, we analyze the interaction among concept activations through
ordinal ranking to predict the model’s failures, and interpret why it fails. “Detect failures” is triggered when the confidence falls
below a predefined threshold. Best viewed in color.

function to assign each rank in r a weight wi ∈ w, resulting
in a decreasing vector whose elements sum up to 1. Loga-
rithmic ensures a smooth distribution of weights among the
ranks of each concept, enabling a more nuanced estimation
of the confidence level. Specifically, the logarithmic scaling
equation is defined as wi =

log(1+ri)∑K
j=1 log(1+rj)

, with the normal-

ization of each weight wi in w. Finally, for each category c
with its concepts featuring in Atop-K , we calculate the pre-
diction and the confidence of the model as follows:

f(x) = argmaxc∈Y

K∑
k=1

I(ak ∈ Ac) · wk (8)

g(f,x) = maxc∈Y

K∑
k=1

I(ak ∈ Ac) · wk (9)

where ak is the kth concept in the ordered set Atop-K , and I(·)
denotes the indicator function that returns 1 if the condition
is true. We refer to this variant as ORCA-R.

Experiment

Datasets. We evaluate ORCA on a wide variety of datasets:
1. Natural Image Benchmark (1) CIFAR-10/100
(Krizhevsky 2009) is a popular image recognition bench-
mark spanning across 10/100 categories. (2) ImageNet-
1K (Deng et al. 2009) a well-known benchmark in computer
vision, containing 1000 fine-grained categories, with
1,281,167 training and 50,000 validation samples. This
benchmark contains fine-grained categories that are visually
similar, making the failure detection task more challenging.
2. Satellite Image Benchmark (3) EuroSAT (Helber et al.
2017) is a satellite RGB image dataset, containing 10 cate-
gories of land usage, such as forest, river, residential build-
ings, industrial buildings, etc. The dataset comprises of
27,000 geo-referenced samples. (4) RESISC45 (Cheng, Han,

and Lu 2017) is a public benchmark for Remote Sensing Im-
age Scene Classification. It contains 31,500 images, cover-
ing 45 scene categories with 700 images in each categories.

Baselines. We compare ORCA to 3 models in combination
with 3 CSFs, yielding a total of 9 baselines. Note that we
only compare with post-hoc CSFs because our methods do
not require any training.
1. Models (1) Zero-shot (Radford et al. 2021): The predic-
tion of zero-shot CLIP relies on the text category name as in-
troduced in the original paper. We compute the logits using
Eq. 3 and apply CSFs to calculate the model’s confidence.
(2) Ensemble (Radford et al. 2021): This model ensembles
multiple templates into zero-shot classification, effectively
acting as an ensemble method. We average the similarity
scores from multiple templates for each category before ex-
tracting the softmax logits. (3) DescCLIP (Menon and Von-
drick 2023): As described in Sec. , DescCLIP averages the
similarity scores of all the concepts for each category; we
then apply CSFs to estimate the confidence score.
2. CSFs (1) MSP (Hendrycks and Gimpel 2016): The confi-
dence score is measured by taking the maximum value of the
softmax responses. (2) ODIN (Liang, Li, and Srikant 2018):
This CSF is a temperature-scaled version of MSP. We use
the default temperature T = 1000 and do not use pertur-
bation for a fair comparison. (3) DOCTOR (Granese et al.
2021): Unlike MSP, DOCTOR fully exploits all available
information contained in the soft-probabilities of the predic-
tions to estimate the confidence.

Implementation Details. We utilize CLIP’s ResNet-101
and ViT-B/32 backbones to perform zero-shot prediction on
the benchmarks and calculate the performance metrics. For
dataset with few categories, such as CIFAR-10 and EuroSAT,
we use different prompts to retrieve diverse collections of
concepts from the large language model GPT-3.5 (Brown
et al. 2020; Peng et al. 2023) and manually select the top
10 visual concepts that are the most distinctive among cate-
gories. An example of our prompt is as follows, with more



Dataset Method ResNet-101 ViT-B/32

AUROC ↑ FPR95 ↓ ACC ↑ AUROC ↑ FPR95 ↓ ACC ↑

CIFAR10
(K = 10)

Zero-shot + MSP 85.98 62.98 78.01 88.92 58.66 88.92
+ ODIN 83.65 65.50 78.01 84.49 65.36 88.92
+ DOCTOR 86.56 63.76 78.01 88.58 62.32 88.92

Ensemble + MSP 86.35 63.53 80.97 89.25 57.03 89.70
+ ODIN 83.39 67.95 80.97 83.66 63.34 89.70
+ DOCTOR 85.67 66.53 80.97 88.68 58.87 89.70

DescCLIP + MSP 85.84 64.68 80.70 89.28 58.77 88.80
+ ODIN 80.92 68.34 80.70 82.61 66.83 88.80
+ DOCTOR 84.99 67.92 80.70 88.80 61.64 88.80

ORCA-B 84.90 66.09 80.98 87.34 50.52 89.34
ORCA-R 85.93 62.68 80.60 89.00 52.70 90.00

CIFAR100
(K = 20)

Zero-shot + MSP 80.72 73.40 48.50 81.15 71.09 58.42
+ ODIN 77.21 75.13 48.50 76.93 71.08 58.42
+ DOCTOR 79.68 75.36 48.50 81.57 69.40 58.42

Ensemble + MSP 79.22 73.43 48.66 81.44 70.88 63.91
+ ODIN 75.59 76.00 48.66 75.73 73.87 63.91
+ DOCTOR 77.96 76.47 48.66 80.02 74.06 63.91

DescCLIP + MSP 80.22 73.39 52.90 82.54 67.38 66.70
+ ODIN 75.86 75.35 52.90 75.72 73.11 66.70
+ DOCTOR 79.09 74.96 52.90 81.30 70.83 66.70

ORCA-B 80.35 70.46 52.16 83.35 67.35 66.00
ORCA-R 80.46 72.38 53.11 83.40 67.00 66.50

ImageNet
(K = 25)

Zero-shot + MSP 78.93 74.05 56.67 79.44 72.91 58.37
+ ODIN 70.59 80.75 56.67 70.48 80.07 58.37
+ DOCTOR 78.38 75.90 56.67 79.01 74.17 58.37

Ensemble + MSP 78.58 74.37 56.73 79.66 72.89 59.22
+ ODIN 70.29 80.98 56.73 70.61 80.55 59.22
+ DOCTOR 77.98 76.25 56.73 78.34 76.24 59.22

DescCLIP + MSP 80.09 72.99 61.94 80.77 71.34 63.20
+ ODIN 69.92 81.53 61.94 70.80 80.14 63.20
+ DOCTOR 79.68 73.95 61.94 80.50 71.96 63.20

ORCA-B 80.24 71.13 62.11 80.77 69.19 63.02
ORCA-R 80.57 72.41 62.29 80.91 71.70 63.20

Table 1: Performance on CIFAR-10/100 and ImageNet. AUROC, FPR@95TPR (FPR95), and ACC are percentages. With ACC
taken into account, bold indicate the best results, underlined denote ours with the second best results.

details in the Supplementary:

Q: What are some distinctive visual
concepts of [CATEGORY]?

A: Some distinctive visual concepts of
[CATEGORY] are:

For datasets with a larger number of categories, we use the
concept collection provided by Yang et al. (Yang et al. 2022).
This collection contains up to 500 concept candidates per
category; we then select the top concepts that yield the high-
est average similarity score with the images within each cat-
egory to form A. We include the number of concepts used
for each dataset in Table 1 and 2.

Evaluation Metrics
Failure detection accuracy (AUROC). This evaluation
protocol, a threshold-independent performance evaluation,
measures the area under the receiver operating characteris-
tic curve as CSFs inherently perform binary classification
between correct and incorrect predictions. A higher value
denotes better ability to predict failures.

False positive rate (FPR@95TPR). This metric denotes the
false positive rate or the probability that a misclassified sam-
ple is predicted as a correct one when the true positive rate is
at 95%. It is a fraction that the model falsely assigns higher
confidence values to incorrect samples, reflecting the ten-
dency to be overly confident in incorrect predictions.
Classification accuracy (ACC). A classifier with low ac-
curacy might produce easy-to-detect failures (Jaeger et al.
2023) and benefit from a high AUROC. Ideally, we wish a
model to yield a high AUROC and ACC, and a low FPR
simultaneously.

Results on Natural Image Benchmarks
We report the performance of all methods on the three eval-
uation metrics on the natural image benchmarks on ResNet-
101 and ViT-B/32 and provide the following observations:

Observation 1: Concept-based methods demonstrate bet-
ter failure detection.

Table 1 shows DescCLIP and ORCA consistently achieves



higher AUROC compared to Zero-shot and Ensemble, es-
pecially on datasets with a large number of categories, such
as CIFAR-100 and ImageNet. The augmentation to multiple
signals per category helps concept-based methods obtain a
finer-grained analysis for better failure detection. On a dif-
ferent note, Ensemble boosts the Zero-shot’s ACC but still
results in a lower AUROC and higher FPR on the large-scale
datasets for both backbones. Ensemble, in the same princi-
ples as concept-based methods, augments the number of sig-
nals; however, we hypothesize the lack of diversity in those
signals deteriorates the separability between correct and in-
correct samples.

Observation 2: Our method reduces overconfident but in-
correct predictions.

In Table 1, we observe that our methods consistently reduce
the false positive rate across datasets and for both back-
bones. Both variants of ORCA decrease the FPR@95TPR
substantially while keeping AUROC and ACC competitive.
On ImageNet, ORCA-B achieves the best performance on
this metric, outperforming the zero-shot model and Desc-
CLIP by 3.72% and 2.15% respectively using ViT-B/32.
We hypothesize that allowing the model to recognize an
object from different angles provides more reliable confi-
dence assessment, enabling faithful failure detection while
also achieving superior predictive accuracy.

Results on Satellite Image Benchmarks
We report the performance on EuroSAT and RESISC45 on
ResNet-101 and ViT-B/32. Note that all results are zero-shot
performance. We discuss the following observation:

Observation 3: Our method boosts both predictive and
failure detection accuracy on remote sensing benchmarks.

Table 2 shows that ORCA-R consistently outperforms all
baselines on all evaluation metrics. Compared to DescCLIP
+ MSP on EuroSAT, ORCA-R enjoys a 3.6% improvement
in AUROC and 6.25% in FPR while boosting the overall
accuracy by 1.49%. On RESISC45, while ORCA-R’s im-
provement on AUROC and ACC is marginal, it significantly
reduces FPR. Additionally, these datasets represent out-of-
distribution data for CLIP, underscoring ORCA’s enhanced
reliability and robustness against such distributional varia-
tions.

Ablation Studies
We conduct two ablation studies on the effect of the number
of concepts and the choice of the weighting function used for
ORCA-R in this section.
Ablation on number of concepts. We use the ViT-B/32
backbone on CIFAR-100 and K = {5, 10, 15, 20} for this
experiment. We study the effect of the number of concepts
on the performance on AUROC and FPR@95TPR of Desc-
CLIP + MSP, ODIN, DOCTOR and ORCA-R. Fig. 3 shows
that the FPR of ORCA-R is consistently lower than those
of the other baselines across various K. We also see an in-
creasing (decreasing) trend in AUROC (FPR) as the number

Figure 3: Failure detection accuracy (AUROC) and false
positive rate (FPR@95TPR) across different numbers of
concepts on CIFAR-100. Overall, we can an increase in the
number of concepts boosts the performance in both metrics.

Figure 4: Failure detection capabilities of each weighting
function on EuroSAT, where Logarithmic consistently
outperforms others.

of concepts rises. This signifies a finer-grained assessment
both enables better failure detection and alleviates the prob-
lem of assigning high confidence to incorrect predictions.
Ablation on choice of weighting function. We examine
how various weighting functions influence the failure detec-
tion efficacy of ORCA-R. Fig. 4 (left) visualizes the weight
distribution on the top-10 concepts among the weighting
functions. In Figure 4 (right), Logarithmic outperforms
others, contrasting with Exponential, which exhibits the
least effectiveness. Logarithmic ensures a balanced dis-
tribution of weights, recognizing the importance of higher-
ranked concepts while also accounting for lower-ranked
ones. Conversely, Exponential significantly overweighs
the highest-ranked concept, neglecting the contributions of
those ranked lower.



Dataset Method ResNet-101 ViT-B/32

AUROC ↑ FPR95 ↓ ACC ↑ AUROC ↑ FPR95 ↓ ACC ↑

EuroSAT
(K = 10)

Zero-shot + MSP 61.73 88.98 30.30 76.42 80.24 41.11
+ ODIN 61.35 89.38 30.30 75.54 79.28 41.11
+ DOCTOR 60.76 89.85 30.30 76.67 79.30 41.11

Ensemble + MSP 54.69 92.21 31.90 66.83 89.19 48.73
+ ODIN 55.10 93.09 31.90 65.73 90.09 48.73
+ DOCTOR 53.73 94.09 31.90 61.14 90.63 48.73

DescCLIP + MSP 64.89 86.39 33.13 73.93 77.54 48.51
+ ODIN 64.16 87.16 33.13 71.74 78.34 48.51
+ DOCTOR 62.79 89.05 33.13 72.74 79.85 48.51

ORCA-B 67.86 86.43 34.11 76.20 77.80 49.74
ORCA-R 69.01 86.43 34.76 77.55 71.29 50.00

RESISC45
(K = 10)

Zero-shot + MSP 68.13 87.04 37.66 77.92 80.35 55.57
+ ODIN 62.60 89.48 37.66 71.66 84.85 55.57
+ DOCTOR 67.57 87.19 37.66 76.95 82.17 55.57

Ensemble + MSP 68.87 85.39 39.79 78.40 80.14 56.68
+ ODIN 62.67 89.57 39.79 71.99 85.31 56.68
+ DOCTOR 67.88 87.29 39.79 77.54 82.34 56.68

DescCLIP + MSP 73.44 79.78 43.16 77.47 82.25 58.33
+ ODIN 69.47 84.61 43.16 71.49 86.21 58.33
+ DOCTOR 72.95 79.89 43.16 76.81 84.88 58.33

ORCA-B 71.88 90.41 46.22 77.71 86.31 59.10
ORCA-R 74.28 80.31 45.13 78.24 76.52 59.10

Table 2: Performance on EuroSAT and RESICS45. AUROC, FPR@95TPR (FPR95), and ACC are percentages. With ACC
taken into account, bold indicate the best results, underlined denote ours with the second best results.

Failure Interpretation

ORCA not only achieves superior failure detection but also
enables failure interpretation with human-level concepts. We
discuss two scenarios that cause the model to output over-
confident values on misclassified samples: spurious correla-
tion and cross-category resemblance (Fig. 5).

In the former scenario (Fig. 5a), the presence of a road
(a spurious feature) leads the model to misclassify the ship
as a land vehicle, automobile or truck. We demonstrate that
a standard model struggles to identify such failures, result-
ing in a high confidence score for automobile. In contrast,
ORCA leverages human-level concepts, offering more nu-
anced signals for a refined assessment of the model’s con-
fidence. For instance, strong responses from concepts like
“road vehicle” and “four wheels” for automobile, and “cargo
area” and “trailer” for truck, contribute to a significantly
lower confidence. Furthermore, we can easily interpret why
the model makes such a prediction through concepts.

In the latter scenario (Fig. 5b), the ship (sailboat) bears
a resemblance to an airplane from a distance. The similar-
ity between the sky and water also creates an illusion of
the object being airborne. The top-K concepts from our
method exhibit strong responses to concepts associated with
airplanes and birds. Analyzing this information allows us to
confidently deduce that the model misclassifies the image as
an airplane due to the sky-like background and the object’s
resemblance to an airplane.

Code — https://github.com/Nyquixt/ORCA

(a) Failure caused by spurious correlation.

(b) Failure caused by cross-category resemblance.

Figure 5: Failure interpretation with human-level concepts.
We show the confidence scores of the top 3 categories (left
histograms) and similarity scores of the top 10 concepts
(right histograms) from CIFAR-10. Standard methods might
output overconfident misclassifications due to: (a) spurious
correlation and (b) cross-category resemblance. Concept-
level signals not only achieves better failure detection ca-
pability in such scenarios but also enables further interpreta-
tion of why the model fails. “auto” is short for “automobile.”
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