
Adaptive Cascading Network for Continual Test-Time Adaptation
Kien X. Nguyen∗

Department of Computer and
Information Sciences
University of Delaware
Newark, Delaware, USA
kxnguyen@udel.edu

Fengchun Qiao∗
Department of Computer and

Information Sciences
University of Delaware
Newark, Delaware, USA
fengchun@udel.edu

Xi Peng
Department of Computer and

Information Sciences
University of Delaware
Newark, Delaware, USA

xipeng@udel.edu

ABSTRACT
We study the problem of continual test-time adaption where the
goal is to adapt a source pre-trained model to a sequence of unla-
belled target domains at test time. Existing methods on test-time
training suffer from several limitations: (1) Mismatch between the
feature extractor and classifier; (2) Interference between the main
and self-supervised tasks; (3) Lack of the ability to quickly adapt to
the current distribution. In light of these challenges, we propose
a cascading paradigm that simultaneously updates the feature ex-
tractor and classifier at test time, mitigating the mismatch between
them and enabling long-term model adaptation. The pre-training of
our model is structured within a meta-learning framework, thereby
minimizing the interference between the main and self-supervised
tasks and encouraging fast adaptation in the presence of limited
unlabelled data. Additionally, we introduce innovative evaluation
metrics, average accuracy and forward transfer, to effectively mea-
sure the model’s adaptation capabilities in dynamic, real-world
scenarios. Extensive experiments and ablation studies demonstrate
the superiority of our approach in a range of tasks including image
classification, text classification, and speech recognition. Our code
is publicly available at https://github.com/Nyquixt/CascadeTTA.

CCS CONCEPTS
• Computing methodologies→Machine learning algorithms.

KEYWORDS
Continual Test-time Adaptation, Self-supervised Learning, Transfer
Learning

ACM Reference Format:
Kien X. Nguyen, Fengchun Qiao, and Xi Peng. 2024. Adaptive Cascading
Network for Continual Test-Time Adaptation. In Proceedings of the 33rd
ACM International Conference on Information and Knowledge Management
(CIKM ’24), October 21–25, 2024, Boise, ID, USA. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3627673.3679801

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM ’24, October 21–25, 2024, Boise, ID, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0436-9/24/10
https://doi.org/10.1145/3627673.3679801

<latexit sha1_base64="qR3F+vFKfBsRARw7sQ/+PMLhYVc=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0hE1GPBi8cK9gPaUDbbTbt0s4m7E6GE/gkvHhTx6t/x5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z+oHh61TJJpxpsskYnuhNRwKRRvokDJO6nmNA4lb4fj25nffuLaiEQ94CTlQUyHSkSCUbRSp4cjjrRP+9Wa53pzkFXiF6QGBRr96ldvkLAs5gqZpMZ0fS/FIKcaBZN8WullhqeUjemQdy1VNOYmyOf3TsmZVQYkSrQthWSu/p7IaWzMJA5tZ0xxZJa9mfif180wuglyodIMuWKLRVEmCSZk9jwZCM0ZyokllGlhbyVsRDVlaCOq2BD85ZdXSevC9a/cy/vLWt0t4ijDCZzCOfhwDXW4gwY0gYGEZ3iFN+fReXHenY9Fa8kpZo7hD5zPHxMgj/E=</latexit>

✓a

(a) Parallel Paradigm

<latexit sha1_base64="w1Podw0HEouDD3BgkaDxXK6y6Fs=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lKqR4LXjxWsB/QhrLZbpqlu5uwuxFK6F/w4kERr/4hb/4bN20O2vpg4PHeDDPzgoQzbVz32yltbe/s7pX3KweHR8cn1dOzno5TRWiXxDxWgwBrypmkXcMMp4NEUSwCTvvB7C73+09UaRbLRzNPqC/wVLKQEWxyaZREbFytuXV3CbRJvILUoEBnXP0aTWKSCioN4Vjroecmxs+wMoxwuqiMUk0TTGZ4SoeWSiyo9rPlrQt0ZZUJCmNlSxq0VH9PZFhoPReB7RTYRHrdy8X/vGFqwls/YzJJDZVktShMOTIxyh9HE6YoMXxuCSaK2VsRibDCxNh4KjYEb/3lTdJr1L1WvfnQrLUbRRxluIBLuAYPbqAN99CBLhCI4Ble4c0Rzovz7nysWktOMXMOf+B8/gARpo44</latexit>

�

<latexit sha1_base64="2DxcLuE+ogEaWLUbS/GXNLS9IVo=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0hE1GPBi8cK9gPaUDbbTbt0N4m7E6GE/gkvHhTx6t/x5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z+oHh61TJJpxpsskYnuhNRwKWLeRIGSd1LNqQolb4fj25nffuLaiCR+wEnKA0WHsYgEo2ilTg9HHGlf9as1z/XmIKvEL0gNCjT61a/eIGGZ4jEySY3p+l6KQU41Cib5tNLLDE8pG9Mh71oaU8VNkM/vnZIzqwxIlGhbMZK5+nsip8qYiQptp6I4MsveTPzP62YY3QS5iNMMecwWi6JMEkzI7HkyEJozlBNLKNPC3krYiGrK0EZUsSH4yy+vktaF61+5l/eXtbpbxFGGEziFc/DhGupwBw1oAgMJz/AKb86j8+K8Ox+L1pJTzBzDHzifPyVQj/0=</latexit>

✓m

<latexit sha1_base64="qR3F+vFKfBsRARw7sQ/+PMLhYVc=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0hE1GPBi8cK9gPaUDbbTbt0s4m7E6GE/gkvHhTx6t/x5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z+oHh61TJJpxpsskYnuhNRwKRRvokDJO6nmNA4lb4fj25nffuLaiEQ94CTlQUyHSkSCUbRSp4cjjrRP+9Wa53pzkFXiF6QGBRr96ldvkLAs5gqZpMZ0fS/FIKcaBZN8WullhqeUjemQdy1VNOYmyOf3TsmZVQYkSrQthWSu/p7IaWzMJA5tZ0xxZJa9mfif180wuglyodIMuWKLRVEmCSZk9jwZCM0ZyokllGlhbyVsRDVlaCOq2BD85ZdXSevC9a/cy/vLWt0t4ijDCZzCOfhwDXW4gwY0gYGEZ3iFN+fReXHenY9Fa8kpZo7hD5zPHxMgj/E=</latexit>

✓a

(b) Cascading Paradigm

<latexit sha1_base64="w1Podw0HEouDD3BgkaDxXK6y6Fs=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lKqR4LXjxWsB/QhrLZbpqlu5uwuxFK6F/w4kERr/4hb/4bN20O2vpg4PHeDDPzgoQzbVz32yltbe/s7pX3KweHR8cn1dOzno5TRWiXxDxWgwBrypmkXcMMp4NEUSwCTvvB7C73+09UaRbLRzNPqC/wVLKQEWxyaZREbFytuXV3CbRJvILUoEBnXP0aTWKSCioN4Vjroecmxs+wMoxwuqiMUk0TTGZ4SoeWSiyo9rPlrQt0ZZUJCmNlSxq0VH9PZFhoPReB7RTYRHrdy8X/vGFqwls/YzJJDZVktShMOTIxyh9HE6YoMXxuCSaK2VsRibDCxNh4KjYEb/3lTdJr1L1WvfnQrLUbRRxluIBLuAYPbqAN99CBLhCI4Ble4c0Rzovz7nysWktOMXMOf+B8/gARpo44</latexit>

� <latexit sha1_base64="2DxcLuE+ogEaWLUbS/GXNLS9IVo=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0hE1GPBi8cK9gPaUDbbTbt0N4m7E6GE/gkvHhTx6t/x5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z+oHh61TJJpxpsskYnuhNRwKWLeRIGSd1LNqQolb4fj25nffuLaiCR+wEnKA0WHsYgEo2ilTg9HHGlf9as1z/XmIKvEL0gNCjT61a/eIGGZ4jEySY3p+l6KQU41Cib5tNLLDE8pG9Mh71oaU8VNkM/vnZIzqwxIlGhbMZK5+nsip8qYiQptp6I4MsveTPzP62YY3QS5iNMMecwWi6JMEkzI7HkyEJozlBNLKNPC3krYiGrK0EZUsSH4yy+vktaF61+5l/eXtbpbxFGGEziFc/DhGupwBw1oAgMJz/AKb86j8+K8Ox+L1pJTzBzDHzifPyVQj/0=</latexit>

✓m

Forward Backward (Pre-train) Backward (Test)

Feature Extractor Main Classifier
<latexit sha1_base64="D1tsqWsLLwguVJTFlox4ynowihI=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBahp5JIUfFU8OKxgm2VNpTNdtMu3U3C7kQoob/CiwdFvPpzvPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYW9/Y3Cpul3Z29/YPyodHbROnmvEWi2WsHwJquBQRb6FAyR8SzakKJO8E45uZ33ni2og4usdJwn1Fh5EIBaNopccejjjSvrrulytuzZ2DrBIvJxXI0eyXv3qDmKWKR8gkNabruQn6GdUomOTTUi81PKFsTIe8a2lEFTd+Nj94Ss6sMiBhrG1FSObq74mMKmMmKrCdiuLILHsz8T+vm2J45WciSlLkEVssClNJMCaz78lAaM5QTiyhTAt7K2EjqilDm1HJhuAtv7xK2uc176JWv6tXGtU8jiKcwClUwYNLaMAtNKEFDBQ8wyu8Odp5cd6dj0VrwclnjuEPnM8fo5qQOw==</latexit>

✓m :
<latexit sha1_base64="rGPgWtL8bXCJIVhrURTIvUkJGd4=">AAAB8HicbVBNS8NAEN3Ur1q/qh69LBbBU0lKUfFU8OKxgm2VNpTNdtIu3U3C7kQoob/CiwdFvPpzvPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYW9/Y3Cpul3Z29/YPyodHbROnmkOLxzLWDwEzIEUELRQo4SHRwFQgoROMb2Z+5wm0EXF0j5MEfMWGkQgFZ2ilxx6OAFmfXffLFbfqzkFXiZeTCsnR7Je/eoOYpwoi5JIZ0/XcBP2MaRRcwrTUSw0kjI/ZELqWRkyB8bP5wVN6ZpUBDWNtK0I6V39PZEwZM1GB7VQMR2bZm4n/ed0Uwys/E1GSIkR8sShMJcWYzr6nA6GBo5xYwrgW9lbKR0wzjjajkg3BW355lbRrVe+iWr+rVxq1PI4iOSGn5Jx45JI0yC1pkhbhRJFn8kreHO28OO/Ox6K14OQzx+QPnM8flGCQOQ==</latexit>

✓a : Auxiliary Classifier
<latexit sha1_base64="PcDoVR5iLSxlBSWVIVWtJwaD7S0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBZBPJREioqnghePFUxbaEPZbCft0s0m7G6EUvobvHhQxKs/yJv/xm2bg7Y+GHi8N8PMvDAVXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKmTTDH0WSIS1Q6pRsEl+oYbge1UIY1Dga1wdDfzW0+oNE/koxmnGMR0IHnEGTVW8rvpkN/2yhW36s5BVomXkwrkaPTKX91+wrIYpWGCat3x3NQEE6oMZwKnpW6mMaVsRAfYsVTSGHUwmR87JWdW6ZMoUbakIXP198SExlqP49B2xtQM9bI3E//zOpmJboIJl2lmULLFoigTxCRk9jnpc4XMiLEllClubyVsSBVlxuZTsiF4yy+vkuZl1buq1h5qlfpFHkcRTuAUzsGDa6jDPTTABwYcnuEV3hzpvDjvzseiteDkM8fwB87nD42tjnQ=</latexit>

� :

<latexit sha1_base64="1T4i/9x3iJn4DRtI/c81mN5bX6w=">AAAB73icbVBNS8NAEN3Ur1q/qh69LBbBU0lKUY8FLx4r2A9oQ5lsN+3SzSbuToQS+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G4DhUijeQoGSdxPNIQok7wST27nfeeLaiFg94DThfgQjJULBAK3U7eOYIwxgUK64VXcBuk68nFRIjuag/NUfxiyNuEImwZie5yboZ6BRMMlnpX5qeAJsAiPes1RBxI2fLe6d0QurDGkYa1sK6UL9PZFBZMw0CmxnBDg2q95c/M/rpRje+JlQSYpcseWiMJUUYzp/ng6F5gzl1BJgWthbKRuDBoY2opINwVt9eZ20a1Xvqlq/r1catTyOIjkj5+SSeOSaNMgdaZIWYUSSZ/JK3pxH58V5dz6WrQUnnzklf+B8/gAUVI/1</latexit>

✓a

Figure 1: (a) Parallel paradigm for test-time training [40],
and (b) our proposed cascading paradigm for continual test-
time training. The proposed cascading paradigm efficiently
mitigates the mismatch between the feature extractor and
main classifier, enabling long-term model adaptation.

1 INTRODUCTION
Intelligent systems operating in real-world settings frequently en-
counter non-stationary data distributions that evolve over time.
For example, self-driving cars would face dynamically changing
environments due to weather, lighting conditions, geographic loca-
tions, etc. This variability poses significant challenges to machine
learning models as a highly accurate model on training data may
fail catastrophically on shifted distributions [11? ? ? ?]. These chal-
lenges necessitate model retraining to assimilate new distributions,
also known as continual learning [31]. However, most existing con-
tinual learning approaches are designed primarily for fully labeled
datasets, which is prohibitively expensive.

Test-time adaptation [34, 40, 45?] is a promising approach to
adapt a pre-trained model to unlabelled target data without access
to training data. The essence of these methods lies in the incor-
poration of a self-supervised learning (SSL) task, e.g., predicting
image rotation, minimizing the entropy loss, etc. Recently, Wang
et al. [46] has extended the problem setting to continual test-time
adaptation, where there is a sequence of target distributions at test
time, to better reflect the real-world scenario. However, recent work
Liu et al. [29] shows that the unconstrained model update from the
SSL task may interfere with the main task. This interference results
in the accumulation of prediction errors and a gradual deviation
from the model’s true predictive mechanism, preventing long-term
model adaptation. Moreover, existing methods lack the ability of
quickly adapting (e.g., adapting with few gradient steps) the model
to the current distribution and demand statistically sufficient data
(e.g. large batch size). This issue is crucial for continual and non-
stationary settings when test data arrive in an online manner with
small batches. In addition, test-time training methods [3, 29, 40]
typically employ a parallel paradigm (Fig. 1 (a)) with an auxiliary

ar
X

iv
:2

40
7.

12
24

0v
2

 [
cs

.L
G

]
 1

 O
ct

 2
02

4

https://orcid.org/0009-0002-6470-7278
https://orcid.org/0000-0003-2714-2036
https://orcid.org/0000-0002-7772-001X
https://github.com/Nyquixt/CascadeTTA
https://doi.org/10.1145/3627673.3679801
https://doi.org/10.1145/3627673.3679801

CIKM ’24, October 21–25, 2024, Boise, ID, USA Kien X. Nguyen, Fengchun Qiao, and Xi Peng

classifier for the SSL task, thus only enabling feature update while
keeping the main classifier fixed at test time. Continually updating
the model in such a manner would lead to a growing misalignment
between the feature extractor and the main classifier, leading to
deteriorated test accuracy.

To address the issues, we propose a cascading paradigm for
continual test-time adaptation. In contrast to previous parallel par-
adigm which only enables feature update, the proposed cascade
paradigm (Fig. 1 (b)) synchronously modulates the feature extractor
and main classifier at test-time, mitigating the mismatch between
them and enables long-term model adaptation. To optimize the pro-
posed cascading paradigm, we organize the model pre-training in a
meta-learning framework, minimizing the interference between the
main and SSL tasks and encouraging fast adaptation with limited
amounts of unlabelled data.

Given the complexities identified in continual test-time adapta-
tion, we recognize the need for more refined metrics in addition to
those tailored for standard test-time adaptation [13]. Taking inspi-
ration from the continual learning literature [43], we introduce two
new evaluationmetrics to the continual test-time adaptation setting:
(1) average accuracy identifies whether the model has drifted away
from the true prediction mechanisms at the end of the adaptation
process, and (2) forward transfer evaluates the model’s capability to
leverage knowledge from the past domains to adapt to the current
one. To summarize, our contribution is multi-fold:

• We propose a cascading paradigm tailored for continual test-
time adaptation to efficiently eliminate the mismatch be-
tween the feature extractor and classifier at test-time, en-
abling long-term model adaptation.
• We organize themodel pre-training in ameta-learning frame-
work to align the main and SSL tasks, meanwhile encourag-
ing fast adaptation to target distributions in the presence of
limited unlabelled data.
• We introduce new evaluation metrics, namely average accu-
racy and forward transfer, to further understand the model’s
behavior in long-term adaptation.
• Extensive experiments demonstrate the superiority of our
approach in a wide scope of tasks including image classifica-
tion, text classification, and speech recognition.

2 RELATEDWORK
Test-time Adaptation. Several methods have been developed to
adapt pre-trained models to test data from shifted distributions
without accessing source data. Liang et al. [27] used information
maximization and pseudo-labeling for implicit alignment between
target and source domains. Sun et al. [40] adapts the feature extrac-
tor using self-supervised tasks like image rotation prediction. Batch
normalization methods, including re-estimating target domain nor-
malization statistics [25] and introducing entropy-based updates
[45], are also utilized. However, these methods often lack flexibility
for continually changing distributions. Recently, Wang et al. [46]
formulated continual test-time adaptation (CoTTA) to address the
issue of catastrophic forgetting for non-stationary distributional
shifts. Despite its effectiveness, CoTTA updates all parameters of
model, degrading adaptation efficiency and risking overfitting to

data streams. This problem is also known as batch dependency, or
over-adaptation on previous test batches [52].

Continual Learning. The objective is to learn progressively
from tasks in sequence without erasing previously gained knowl-
edge [7]. Existing methods can be divided into three categories:
regularization-based [18, 26], memory replay [5, 35], and parameter
isolation methods [1, 30]. Different from continual test-time adap-
tation, they focus on learning new tasks with fully labelled datasets.
Several methods are proposed to adapt models to a sequence of
unlabelled target domains, also known as continual domain adapta-
tion [15, 49]. Liu et al. [28] suggested a meta-adaptation framework
capable of capturing the evolving pattern of the target domain.
Su et al. [39] proposed gradient regularized contrastive learning
to learn discriminative and domain-invariant representations si-
multaneously. Lao et al. [20] introduced a modularized two-stream
system which can handle both task and domain shifts. However,
these methods rely on the co-existence of both the source and target
domains, and cannot be applied directly in our problem. Lifelong
domain adaptation [16, 36] lifts this restriction but necessitates
estimating internal source distribution for adaptation.

Meta-learning.Meta-learning [37] is a long-standing topic on
learning models to generalize over a distribution of tasks. Model-
Agnostic Meta-Learning (MAML) by Finn et al. [9] was proposed
to adapt the model to new tasks within a few gradient steps. The
key idea is to learn a good initialization from which the model is
able to be quickly adapted to new tasks with few-shot examples.
Several approaches [? ?] have been proposed to use meta-learning
to address distributional shifts. Li et al. [23] suggested an episodic
training paradigm to improve models’ generalization capability.
Balaji et al. [2] came up with MetaReg that meta-learned a reg-
ularization function that can generalize to new domains. Dou et
al. [8] proposed to incorporate global and local constraints to learn
semantic feature spaces in a modified MAML framework. MT3 [3]
was formulated to incorporate meta-learning into test-time adapta-
tion by learning task-specific model parameters for different tasks.
However, MT3 requires the meta-model to be accessed at test time
which makes continual adaptation for a single model unsuitable.

3 PROBLEM FORMULATION
The problem of continual test-time adaptation is defined by a
pair of random variables (𝑋,𝑌) over instances 𝑥 ∈ X ⊆ R𝑑 and
corresponding labels 𝑦 ∈ Y, where (𝑋,𝑌) follows an unknown
joint distribution P(𝑋,𝑌). At training, we have access to a single
source domain S with labelled dataset DS = {𝒙𝑖𝑠 ,𝒚𝑖𝑠 }

𝑛𝑠
𝑖=1, where

DS ∼ PS (𝑋,𝑌). At test time, we are presented with a sequence
of target domains T = {T1,T2, · · · ,T𝑁 } where for each T𝑖 we only
have access to an unlabelled dataset DT𝑖 =

{
𝒙𝑘𝑡𝑖

}𝑛𝑡𝑖
𝑘=1

and 𝒙𝑡𝑖 arrive
in an online manner with small batches while DS is not available:

𝒙𝑡𝑖
𝑖 .𝑖 .𝑑.∼ DT𝑖 where DT1 → DT2 , · · · ,→ DT𝑁 ∼ PT .

The objective is to learn a predictor 𝑓𝜓 : X → Y to predict
labels {𝒚𝑘𝑡𝑖 }

𝑛𝑡𝑖
𝑘=1 for each T𝑖 , where𝜓 are learnable model parameters.

Typically, 𝑓𝜓 is decomposed into a feature extractor ℎ𝜙 : X → Z ⊂
R𝑝 and a classifier 𝑔𝜃 : Z → Y, i.e., 𝑓𝜓 = 𝑔𝜃 ◦ℎ𝜙 , where𝜓 = (𝜙, 𝜃).

Adaptive Cascading Network for Continual Test-Time Adaptation CIKM ’24, October 21–25, 2024, Boise, ID, USA

Evaluation Metrics
The first evaluation metric is the standard mean online error, which
measures the average classification error across all batches during
adaptation, denoted as E(𝜓). In addition, motivated by continual
learning [43], we propose to evaluate the model in terms of aver-
age accuracy and forward transfer. Let R𝜓 (T𝑖 |T𝑗) denote the test
accuracy on domain T𝑖 after observing T𝑗 . We measure the average
accuracy A(𝜓) on all domains at the end of adaptation:

A(𝜓) = 1
𝑁

𝑁∑︁
𝑡=1
R𝜓 (T𝑡 |T1:𝑁). (1)

Second, we evaluate forward transfer by measuring the accuracy
difference between a model that was updated through the sequence
of past domains and a model that was only updated by the last
domain:

F (𝜓) = 1
𝑁 − 1

𝑁∑︁
𝑡=2
R𝜓 (T𝑡 |T1:𝑡) − R𝜓 (T𝑡 |T𝑡). (2)

The higher the better for two metrics. A high A(𝜓) denotes that
the model does not deviate from the true prediction mechanism; a
positive F (𝜓) indicates the model’s ability to leverage knowledge
from previous domains.

4 METHOD
We introduce a cascading paradigm, as illustrated in Fig. 1 (b),
tailored for continual test-time adaptation. During training, we
update the model on the source domain through a main and a self-
supervised learning (SSL) task. At test time, the feature extractor
and classifier are concurrently updated through the SSL task. This si-
multaneous update diminishes discrepancies between them, paving
the way for sustained model adaptation to target domains. While a
straightforward approach to achieve the cascading paradigm might
involve pre-training the model on both the main and SSL tasks
using multi-task learning, recent research by [29] indicates poten-
tial pitfalls: in multi-task learning, unrestricted updates from the
SSL task can inadvertently conflict with the main task, potentially
undermining rather than enhancing test accuracy. Furthermore,
multi-task learning does not inherently ensure rapid adaptation
to target distributions. To address these challenges, we propose a
meta-learning framework during model pre-training. This frame-
work enforces gradient alignment between the two tasks, effectively
reducing task interference and improving test accuracy.

4.1 Cascading Paradigm
Domain Adaptation [4] is widely used to address distributional
shifts without supervision. However, it requires the co-existence
of both the source and target domains. Test-time training [40] was
proposed to address this issue by leveraging a SSL task for model
adaptation. This method employs a parallel paradigm (Fig. 1 (a)):
a main classifier 𝜃𝑚 for the supervised learning task, an auxiliary
classifier 𝜃𝑎 for the SSL task, and the two classifiers share the same
feature extractor 𝜙 . All modules are updated in pre-training by
multi-task learning, while only the feature extractor is updated at
test-time through the SSL task. However, continually updating the
model in such manner would gradually increase the discrepancy

(1) Domain Randomization

Source dataTransformation

Sample random

transformation

Meta-train set

Meta-test set

Domain-specific

parameters

(2) Meta-train

(3) Meta-test

Forward pass

Backpropagation

S
p
lit

(a) Pre-training Phase

Test data

(b) Test-time Adaptation Phase

Figure 2: Overview of pre-training and adaptation phases.
𝜋 ∼ Ψ denotes a transformation randomly sampled from a
predefined pool of transformations.LENT: entropy loss, LCE:
cross-entropy loss.

between the feature extractor and main classifier, accumulating
prediction errors and deviating from the true prediction mechanism.

To address this issue, we propose a cascading paradigm (Fig. 1
(b)) to synchronously modulate the feature extractor and classi-
fier for continual test-time adaptation. Specifically, we reorganize
the architecture in a sequential manner, starting with the feature
extractor 𝜙 , followed by the main classifier 𝜃𝑚 and finally the auxil-
iary classifier 𝜃𝑎 in that order. At test time, the self-supervised loss
calculated on the output of 𝜃𝑎 is utilized to synchronously update
both 𝜙 and 𝜃𝑚 .

4.2 Model Pre-training
To optimize the proposed cascading paradigm, a straightforward
way is to pre-train the model on both the main and SSL task through
multi-task learning. However, recent work by [29] shows that in
multi-task learning, the unconstrained model update from the SSL
task may interfere with the main task, deteriorating the test accu-
racy rather than improving it. Moreover, multi-task learning cannot
guarantee fast adaptation to target distributions. To address these is-
sues, we propose a meta-learning framework for model pre-training
to enforce the gradient alignment between the two tasks, mitigating
task interference and enabling fast adaptation with only a single
gradient step. Following [32, 45], we employ the entropy loss as
the self-supervised loss. Our pre-training phase, which includes
meta-train and meta-test steps, is structured in a manner that aligns
with gradient-based meta-learning approaches like MAML [9].
DomainRandomization. First, we create simulated non-stationary
target domains that the model would encounter during test time
to support the meta-learning scheme. We employ domain random-
ization [44?] to generate domain augmentations from the single

CIKM ’24, October 21–25, 2024, Boise, ID, USA Kien X. Nguyen, Fengchun Qiao, and Xi Peng

source S through a set of transformations Ψ. Given Ψ and the
source samples {(𝒙𝑠 ,𝒚𝑠)} ∼ PS (𝑋,𝑌) , we generate augmentations
by sampling a specific transformation 𝜋 ∼ Ψ, and then applying
it to the given data, obtaining {(𝜋 (𝒙𝑠) ,𝒚𝑠)} ∼ 𝑝 (S+). For each
iteration, we sample a mini-batch 𝜏 ∼ PS+ (𝑋,𝑌)𝜏 ∼ PS+ (𝑋,𝑌)
representing a random domain. We then divide 𝜏 into meta-train
data Dtrn

𝜏 and meta-validation data Dval
𝜏 for the meta-learning

pre-training phase. Domain randomization varies across different
modalities. The implementation details are provided in Sec. 6 and
Appendix A.
Meta-train. In the inner loop, to mimic themodel adaptation at test-
time, we update 𝜙 and 𝜃𝑚 using the gradients of entropy calculated
on the output of 𝜃𝑎 . Specifically, let𝜓 = {𝜙, 𝜃𝑚}, we update𝜓 via
one step stochastic gradient descent on Dtrn

𝜏 while fixing 𝜃𝑎 :

𝜓 ′ ← 𝜓 − 𝛼∇𝜓E𝜏∼PS+
[
LENT (𝜓, 𝜃𝑎 ;Dtrn

𝜏)
]
, (3)

where 𝛼 is the learning rate of the inner loop and LENT is the
entropy loss. At test time, to avoid overadapting to the data stream
and mitigate the risk of catastrophic forgetting, we only update BN
parameters of 𝜙 . Inspired by the work of [25], [38], and [45], we re-
estimate the statistical moments and update the affine parameters.
Meta-test. In the outer loop, we update𝜓 and 𝜃𝑎 using the gradient
of the meta-loss LMeta on Dval

𝜏 :

{𝜓, 𝜃𝑎} ← {𝜓, 𝜃𝑎} − 𝛽∇{𝜓,𝜃𝑎 }LMeta (𝜓 ′, 𝜃𝑎 ;Dval
𝜏),

LMeta = E𝜏∼PS+
[
LCE

(
𝜓 ′;Dval

𝜏

)
+ 𝜆LENT

(
𝜓 ′, 𝜃𝑎 ;Dval

𝜏

)]
,

(4)
where 𝛽 is the learning rate of the outer loop, LCE denotes cross-
entropy loss, and 𝜆 is the balancing coefficient. Intuitively, the meta-
learning framework distills knowledge from unlabelled samples
and leverages it to facilitate supervised classification. Moreover,
the meta-learned initialization enables the model to fast adapt to
target domains using limited unlabeled samples. With a few steps
of gradient update from the meta-learned representation, the model
can produce accurate predictions on the incoming data stream.
This capability further allows the model to be reliably adapted long-
term without deviating too far from the meta-learned initialization,
empirically illustrated in Sec. 6.1. The pre-training procedure is
summarized in Algorithm 1.

It is worth noting that although Tent and CoTTA do not require
special treatment to model pre-training, they require statistically
sufficient data for model adaptation. We empirically show that our
approach outperforms CoTTA by ∼ 9% in accuracy with the batch
size of 16 (see Sec. 6.4).

5 THEORETICAL ANALYSIS
We first show that the meta-learning framework encourages gra-
dient alignment between the main and self-supervised learning
(SSL) tasks. Next, we show this alignment further upper-bounds
the generalization error by adopting theH -divergence [4].
Theorem 1. (Gradient alignment between the main and SSL tasks).
LetLMain (𝜓) be the loss function for the main task andLSSL (𝜓, 𝜃𝑎)
be the loss function for the SSL task. Suppose the model parameters
are updated using Eq. (4). Then, the gradient of the meta-objective

Algorithm 1: Pre-training for Cascading Paradigm.
Input: Source domain S, transformations Ψ
Output: Learned𝜓 and 𝜃𝑎

1 while not converged do
2 Sample data {(𝒙𝑠 ,𝒚𝑠)} ∼ PS (𝑋,𝑌) ;
3 Sample a transformation 𝜋 ∼ Ψ ;
4 Generate augmentations {(𝜋 (𝒙𝑠) ,𝒚𝑠)} ;
5 Split {(𝜋 (𝒙𝑠) ,𝒚𝑠)} into {Dtrn

𝜏 ,Dval
𝜏 } ;

6 Meta-train: Get𝜓 ′ using Dtrn
𝜏 via Eq. (3) ;

7 Meta-test: Update {𝜓, 𝜃𝑎} on Dval
𝜏 via Eq. (4);

8 end

LMeta with respect to (𝜓, 𝜃𝑎) can be decomposed as:

(𝐼−𝛽∇2(𝜓,𝜃𝑎)LSSL (𝜓 ′, 𝜃𝑎))⊤ (∇𝜓LMain (𝜓 ′)+𝜆∇(𝜓,𝜃𝑎)LSSL (𝜓 ′, 𝜃𝑎)),

where 𝐼 is the identity matrix and ∇2(𝜓,𝜃𝑎)LSSL (𝜓 ′, 𝜃𝑎) is the Hes-
sian matrix of LSSL with respect to (𝜓, 𝜃𝑎). If the Hessian matrix is
positive semi-definite and the learning rate 𝛽 is sufficiently small
(small 𝛽 ensures that the first-order approximation is valid), the
gradient of the SSL task does not interfere with the gradient of the
main task, but rather provides useful information for adaptation.
Theorem 2. (Generalization Upper Bound. Adapted from [28]).
Assuming 𝑑HΔH (PT𝑖 , PT𝑗) ≤ 𝛼 |𝑡𝑖 − 𝑡 𝑗 | holds with constant 𝛼 for
𝑡𝑖 , 𝑡 𝑗 ≥ 0, then for any 𝜓 , with probability at least 1 − 𝛿 over the
sequence of 𝑁 target domains T :

E𝑡EPT L(𝑓𝜓 (𝒙),𝒚) ≤ EPS L(𝑓𝜓 (𝒙),𝒚) +
1
𝑁

𝑁∑︁
𝑖=1
[𝑑HΔH (PS, PT𝑖)]

+ E𝑡𝜆𝑡 +𝑂
(𝛼

𝛿𝑁

)
,

where 𝜆𝑡 = min𝜓 [EPSL(𝑓𝜓 (𝒙),𝒚) +EPTL(𝑓𝜓 (𝒙),𝒚)] measures the
adaptability from source to target. Our method reduces generalization
risks on target domains (EPT in 𝜆𝑡) by aligning the self-supervised
learning (SSL) and main tasks.

6 EXPERIMENTS
We evaluate our approach on three modalities using five benchmark
datasets: CIFAR-10-C, CIFAR-100-C and Tiny-ImageNet-C [13] for
image classification, Amazon Reviews [6] for text classification, and
Google Commands [47] for speech recognition. Section 6.4 includes
ablation studies to investigate key components of the proposed cas-
cading paradigm. We include source code, implementation details,
and more experimental results in the supplementary.
Baselines.We compare the proposed cascading paradigm to the
following baselines: (1) Empirical Risk Minimization (ERM) [42]:
is trained on the source domain and directly evaluated on target
domains without any update. (2) Adaptive Batch Normalization
(AdaBN) [24]: re-estimate normalization statistics on each incom-
ing batch in target domains. (3) Test-time training (TTT) [40]: use
a self-supervised learning task, i.e., predicting image rotation, to
update the feature extractor at test time. (4) Tent [45]: update both
normalization statistics and affine parameters by entropy minimiza-
tion, modified to fit the continual setting by not resetting during
the adaptation process. (5) CoTTA [46]: continually adapt a source

Adaptive Cascading Network for Continual Test-Time Adaptation CIKM ’24, October 21–25, 2024, Boise, ID, USA

Table 1: Results (%) on CIFAR-10/100-C and Tiny-ImageNet-C with the highest corruption severity on the instantaneously changing
setup. Models are pre-trained on the original CIFAR-10/100 and Tiny-ImageNet and continually adapted to a sequence of corruptions
with a batch size of 32 for CIFAR and 64 for Tiny-ImageNet. Our method significantly outperforms other baselines in online error
E(𝜓), average accuracy A(𝜓), and forward transfer F (𝜓).

Dataset Method 𝑡 E(𝜓) ↓ A(𝜓) ↑ F (𝜓) ↑gauss shot impul defoc glass motn zoom snow frost fog brit contr elast pixel jpeg

CIFAR-10-C

ERM 73.06 67.73 73.38 23.71 64.87 34.53 27.08 33.41 47.54 19.49 10.97 23.14 39.14 73.25 36.70 43.20 56.80 -
AdaBN 40.20 37.65 40.63 22.46 52.14 26.03 23.01 27.10 30.20 23.86 12.82 21.13 36.37 33.56 35.31 30.83 69.17 -
TTT 40.61 29.31 37.04 32.68 41.92 34.13 21.29 28.10 22.47 24.25 16.22 24.45 30.01 25.97 24.20 28.84 64.38 -4.42
Tent 27.83 23.08 29.89 20.60 42.48 28.79 26.81 34.92 38.45 38.88 31.71 41.08 49.51 50.70 50.34 35.67 47.69 -31.11
CoTTA 25.63 22.46 27.09 19.75 35.35 23.10 21.33 25.16 24.91 29.15 19.15 33.40 33.22 29.04 28.87 26.51 66.18 -7.49

Ours 28.64 25.36 32.38 15.52 40.55 19.55 16.77 20.65 20.78 19.81 11.34 16.86 28.36 24.16 24.70 22.99 77.36 0.58

CIFAR-100-C

ERM 94.24 91.36 91.52 55.00 87.42 62.58 56.06 67.12 76.52 57.58 42.42 66.97 65.15 90.91 67.73 71.51 28.49 -
AdaBN 78.33 75.91 74.55 52.27 76.21 58.18 55.00 64.70 61.67 58.64 43.64 60.61 64.09 66.06 70.30 64.01 36.12 -
TTT 72.97 68.18 72.86 72.93 77.54 74.06 57.36 73.42 62.37 60.33 48.48 71.81 61.77 60.55 62.00 66.44 26.49 -12.64
Tent 76.52 71.21 68.18 48.79 71.52 52.88 45.15 55.61 53.33 52.42 41.21 54.55 55.00 52.27 59.39 57.20 38.84 -2.30
CoTTA 68.79 70.61 69.39 57.88 70.00 61.36 55.61 61.36 56.67 62.27 45.00 75.61 64.09 60.00 60.30 62.60 35.37 1.52

Ours 66.42 64.78 65.65 44.33 67.20 47.89 46.01 54.11 54.35 53.75 39.85 49.87 57.46 54.66 60.87 55.11 45.23 0.19

Tiny
ImageNet-C

ERM 86.06 83.94 95.00 88.64 92.27 73.79 77.27 65.45 61.21 75.45 57.42 95.45 81.97 64.55 48.94 76.49 23.51 -
AdaBN 85.84 83.43 89.35 82.70 91.00 74.67 75.98 75.23 74.43 78.94 70.90 94.44 77.76 72.01 73.80 80.03 19.97 -
TTT 95.29 78.44 79.32 82.74 88.30 81.13 67.35 75.47 65.57 69.71 60.50 96.02 67.32 59.40 57.01 74.90 20.25 -11.16
Tent 85.22 82.79 88.23 84.40 91.61 80.31 82.26 83.49 84.17 86.33 83.14 96.48 89.76 88.28 89.90 86.42 7.72 -12.58
CoTTA 83.49 80.37 87.86 79.22 89.18 69.65 71.10 70.83 69.49 74.49 64.67 93.07 73.35 65.33 68.00 76.01 24.60 1.29

Ours 74.62 70.12 80.72 77.56 83.63 54.13 54.04 59.22 53.69 63.77 49.34 91.72 63.29 53.84 49.56 65.28 27.39 -12.27

pre-trained model to non-stationary target data by reducing error
accumulation and alleviating forgetting.

For fair comparison, we use our pre-trained model as the back-
bone for all baselines except ERM and TTT, since TTT has its own
pre-training strategy. In contrast to previous work that utilizes pre-
trainedmodels such asWideResNet-28 [50],we train all models from
scratch and refrain from using the data augmentations that coincide
with the corruptions/domains at test time to avoid test data leakage,
accurately measuring the adapting capability of the algorithms.

Metrics. 1) Online error.We immediately record the online pre-
diction of each batch after the model was adapted to it. We calculate
the online prediction error, E(𝜓), by averaging the errors of all tar-
get domains. 2) Continual learning metrics.We further evaluate
the cascading paradigm using the metrics proposed in Section 3:
average accuracy A(𝜓) and forward transfer F (𝜓).

6.1 Image Classification
For image classification, We validate our method on CIFAR-10/100-C
and Tiny-ImageNet-C.

Dataset. CIFAR-10/100-C and Tiny-ImageNet-C [13] is a robust-
ness benchmark consisting of fifteen corruptions types with five
levels of severity applied to the test set of CIFAR-10/100 [19] and
Tiny-ImageNet [21]. The corruptions consist of four main categories:
noise, blur, weather, and digital. We show the model performance
on the highest severity.

Setup. Following [40], we use 15 corruptions as target domains.
The model is pre-trained on the original CIFAR-10/100 and Tiny-
ImageNet datasets and continually adapted to a sequence of im-
age corruptions in CIFAR-10/100-C and Tiny-ImageNet-C. We use
ResNet-26 [12] for the first two datasets and ResNet-34 for the third
dataset. We append a lightweight 2-layer fully connected network
as the auxiliary classifier. During pre-training, the initial learning

rate is 0.001 with a linear decay and the number of epochs is 75. We
use AugMix [14] for domain randomization. At test time, the SGD
optimizer with Nesterov momentum [41] with an online learning
rate of 0.001 updates the model. As we wish to simulate the online
setting, we use a small batch size of 32 for CIFAR-10/100-C and 64
for the more challenging benchmark Tiny-ImageNet-C.

Table 2: Results (%) on CIFAR-10-C on the gradually changing
setup. Models are pre-trained on CIFAR-10 and continually
adapted to a sequence of 135 gradually changing domains
with a batch size of 32. Our method enables long-term adap-
tation to target domains while others fail catastrophically.

Metrics E(𝜓) ↓ A(𝜓) ↑ F (𝜓) ↑
TTT 28.39 60.29 -13.94
Tent 64.26 11.39 -72.83
CoTTA 41.08 26.93 -54.83

Ours 17.51 81.19 -2.4

Results. 1) Instantaneously changing setup. Tab. 1 shows the
results of CIFAR-10-C, CIFAR-100-C, and Tiny-ImageNet-C with the
highest corruption severity on the standard domain sequence. Our
method outperforms other baselines in most corruptions and yields
the lowest average error of 22.99%, 55.11%, and 65.28% on the three
benchmarks, respectively. For forward transfer, our model achieves
a F (𝜓) of 0.58% and 0.19% on CIFAR-10/100-C, showcasing its ca-
pability to adapt to current domains by leveraging past knowledge.
However, on the more challenging benchmark Tiny-ImageNet-C, it
suffers a relatively high negative F (𝜓) of −12.27. Other baselines
exhibit lower performance on online error with negative forward
transfer, except for CoTTA on CIFAR-100-C, and Tiny-ImageNet-C
with a forward transfer of 1.52%, and 1.29%. The results underscore

CIKM ’24, October 21–25, 2024, Boise, ID, USA Kien X. Nguyen, Fengchun Qiao, and Xi Peng

our method’s efficiency in continual adaptation to various image
corruptions.

2) Gradually changing setup. Next, we evaluate our model
on the gradually changing setup, which is more relevant to the
real-world scenario. In the standard sequence of corruptions, target
domains change abruptly, especially in the highest severity. Instead,
following [46], we construct a sequence of target domains such that
the evolving pattern of distributional drift is smoother. Specifically,
for each corruption 𝑡 we continuously change its severity level
from 1 to 5 and then back to 1 and then change the corruption type,
making up 135 target domains:

...2→ 1︸ ︷︷ ︸
𝑡−1 and before

→ 1→ 2→ ...5→ 4→ ...1︸ ︷︷ ︸
corruption 𝑡

→ 1→ 2...︸ ︷︷ ︸
𝑡+1 and after

This setup evaluates the model’s capability of long-term adaptation.
Per Tab. 2, Tent and CoTTA, with the need of statistically sufficient
data, i.e., a large batch size, perform rather poorly. They both suf-
fer from error accumulation over a lengthy sequence of domains
and eventually deviate from the true prediction mechanism. Since
CoTTA updates all model parameters, continually adapting to small
batches causes the model to overfit to the current batch, prevent-
ing it from efficiently adapt to the subsequent ones. In contrast,
our model maintains stability over an extended domain sequence,
achieving a substantial 81.19% average accuracy with minimal for-
ward transfer losses. Our approach alleviates batch dependency
[52] by successfully adapting over 135 diverse domains.

6.2 Text Classification
In this section, we conduct experiments on Amazon Reviews by [6]
for text classification.

Dataset. Amazon Reviews is a widely adopted benchmark in the
context of domain adaptation for sentiment classification. It is a
collection of product reviews from amazon.com in four product
domains: books, dvds, electronics, and kitchen appliances. Reviews
are assigned with binary labels - 0 (or “negative”) if the rating of
the product is up to 3 stars, and 1 (or “positive”) if the rating is 4
or 5 stars. We use unigrams and bigrams as features resulting in
5000 dimensional representations [10]. Following [48], we leverage
the four operations for text augmentation: synonym replacement,
random insertion, random swap and random deletion. See Appx. A.2
for more details on augmentations.

Setup.We pre-train the model on one source domain “books”,
and continually adapt themodel to “dvds”, “electronics”, and “kitchen”.
Similar to [10], the extracted features are fed into two FC layers
with the size of 50. A softmax layer with the size of two is used
to classify the sentiment of reviews into “positive” or “negative”.
We append a BN layer to each hidden layer and append a FC layer
with the size of 2 as the auxiliary classifier. We use Adam [17] to
optimize the model, and the initial learning rate 𝜂0 = 10−4. Similar
to the image classification task, the batch size is set to 32.

Results. Tab. 3 shows the results of text classification onAmazon
Reviews. Results show that our method outperforms others across
all test domains by a large margin. Specially, our method achieves
the lowest online prediction error of 21.73% and the highest aver-
age accuracy of 78.73% across all past domains at the end of the
adaptation. Notably, our model achieves 4.82% in forward transfer,

Table 3: Results (%) on Amazon Reviews. Models are pre-trained
on “books” and continually adapted to “dvds”→ “electronics”
→ “kitchen” with a batch size of 32.

Method 𝑡 E(𝜓) ↓ A(𝜓) ↑ F (𝜓) ↑dvds electronics kitchen

ERM 19.78 26.50 20.06 22.11 77.89 -
AdaBN 20.47 25.03 20.99 22.17 77.83 -
Tent 20.87 25.26 21.85 22.66 77.26 -1.08

Ours 19.19 25.00 21.01 21.73 78.73 4.82

indicating the model can leverage knowledge from past domains
to accelerate the adaptation to the current domain. Results demon-
strates the effectiveness of our method in continually adapting to
different text domains.

6.3 Speech Recognition
In this section, we perform experiments on Google Commands
by [47] for speech recognition.

Table 4: Results (%) on Google Commands. Models are pre-
trained on the clean audios and continually adapted to “Amp.”
→ “Pit.”→ “Noise”→ “Strech”→ “Shift”.

Method 𝑡 E(𝜓) ↓ A(𝜓) ↑ F (𝜓) ↑Amp. Pit. Noise Stretch Shift

ERM 36.5 26.7 27.4 25.8 31.7 29.62 70.38 -
AdaBN 36.8 26.1 26.9 22.5 28.3 28.12 71.88 -
Tent 36.1 23.6 24.8 20.2 28.5 26.64 72.25 -23.15

Ours 35.4 21.2 21.9 20.6 27.3 25.28 74.66 -6.04

Dataset. Google Commands has 65000 utterances (one second
long) from thousands of people. There are 30 different command
words in total. There are 56196, 7477, and 6835 examples for train-
ing, validation, and test. To simulate domain shift in real-world
scenarios, we apply five common corruptions in both time and
frequency domains. This creates five test sets that are “harder” than
training sets, namely amplitude change (Amp.), pitch change (Pit.),
background noise (Noise), stretch (Stretch), and time shift (Shift).
The range of “amplitude change” is (0.7,1.1). The maximum scales
of “pitch change”, “background noise”, and “stretch” are 0.2, 0.45,
and 0.2, respectively. The maximum shift of “time shift” is 8. See
Appx. A.3 for more details on data preprocessing and augmenta-
tions. We use the default hyper-parameters from audiomentations1.

Setup.We pre-train the model on the clean train set, and con-
tinually adapt it to “Amp.”, “Pit.”, “Noise”, “Stretch”, and “Shift”. We
encode each audio into aMel-spectrogramwith the size of 1×32×32
and feed them to LeNet [22] as one-channel input.

Results. Tab. 4 shows the results of speech recognition onGoogle
Commands. As seen, our method outperforms other baselines on
all target domains except “stretch”, indicating its strong adaptation
capability on corruptions in both time and frequency domains. In de-
tail, our method outperforms the second best by 0.7% on “amplitude
change”, 2.4% on “pitch change”, 2.9% on “background noise”, and
1https://github.com/iver56/audiomentations

https://github.com/iver56/audiomentations

Adaptive Cascading Network for Continual Test-Time Adaptation CIKM ’24, October 21–25, 2024, Boise, ID, USA

Table 5: Online classification error (%) on CIFAR-10-C across
different batch sizes on the instantaneously changing setting.
Our method shows consistent performance across different
batch sizes, and outperforms Tent and CoTTA by at least 9%
with a batch size of 16. We report the mean and standard
deviation across all batch sizes.

Batch Size 128 64 32 16 Mean ± Std

Tent 22.53 25.99 35.67 50.28 33.61 ± 12.4
CoTTA 21.75 22.96 26.51 33.58 26.20 ± 5.3

TTT 28.15 27.02 28.84 27.15 27.79 ± 0.7
Ours 22.26 22.32 22.99 24.63 23.05 ± 1.1

1.0% on “time shift”, respectively. Our method suffers significantly
less deterioration in forward transfer compared to Tent.

6.4 Ablation Study
We have shown that our method yields significant improvements
across different modalities including image, text, and speech. In
this section, we perform ablation study to investigate the key com-
ponents of the proposed cascading paradigm and provide main
observations as follows:

Our model is insensitive to batch sizes. In online adaptation,
we expect the batch size to be relatively small and varied; an on-
line model should perform well on such conditions. We show the
classification error on CIFAR-10-C across different batch sizes in
Tab. 5. A smaller standard deviation indicates that a model is less
sensitive to the batch size. CoTTA’s performance drops by 11.83%
when the batch size reduces from 128 to 16 due to overfitting on
early batches with insufficient statistical input. Tent, with limited
data, shows 50.28% average error for batch size 16. In contrast, our
method exhibits the lowest error, remaining consistent across batch
sizes with a 0.9% standard deviation, showcasing its insensitivity
and online adaptability It is also worth noting that both TTT and
our method are insensitive to different batch sizes, possibly due to
the usage of the auxiliary classifier.

1 2 3 4 5
Corruption Severity

14

16

18

20

22

24

To
p-

1
Te

st
 e

rro
r

Ours
Ours w/o a

1 2 3 4 5
Corruption Severity

14

16

18

20

22

24

To
p-

1
Te

st
 e

rro
r

Ours
Ours (m fixed)

Figure 3: Validation of the cascading paradigm on CIFAR-10-C.
Left: Classification error of models w/ and w/o the auxiliary
classifier 𝜃𝑎 . Right: Classification error of models updating
and fixing the main classifier 𝜃𝑚 at test time.

Auxiliary classifier effectively synchronizes modules. The
cascading paradigm allows us to synchronously modulate the fea-
ture extractor 𝜙 and main classifier 𝜃𝑚 through self-supervised

Table 6: Ablation study on the effectiveness of 𝜃𝑎 . Online
classification error (%) on Tiny-ImageNet-C on 5 levels of cor-
ruption severity.

Methods 1 2 3 4 5

w/o 𝜃𝑎 46.07 50.46 56.47 63.82 68.09
Ours 44.20 48.36 54.14 61.45 65.28

learning at test time. To validate its effectiveness, we conduct two
ablation studies on CIFAR-10-C dataset: (1) We discard 𝜃𝑎 and com-
pute the entropy of the output of 𝜃𝑚 . In Fig. 3 (left), we observe
that 𝜃𝑎 consistently improves the classification performance across
all levels of corruption severity, possibly due to that 𝜃𝑎 converts the
logits into another space with less intervention to the cross-entropy.
(2) We only modulate BN-related parameters and keep 𝜃𝑚 fixed at
test time. In Fig. 3 (right), we can see that our model outperforms
the variant with 𝜃𝑚 fixed during test, validating the effectiveness of
jointly modulating both 𝜙 and 𝜃𝑚 . We further conduct the ablation
study on Tiny-ImageNet-C, a more challenging dataset, to confirm
the effectiveness of 𝜃𝑎 , as depicted in Tab. 6.

Table 7: Ablation study on the effect of meta-learning on
CIFAR-10-C across different batch sizes.

Method Meta 128 64 32 16

TTT % 28.15 27.02 28.84 27.15
TTT ! 24.04 24.37 27.93 28.20

Ours % 27.93 47.18 66.53 75.88
Ours ! 22.26 22.32 22.99 24.63

Meta-learning improvesmodel robustness.Themeta-learning
approach aligns gradients between self-supervised and supervised
losses and enables effective initialization. This allows the model to
rapidly adapt to unlabeled target domains with limited data. To vali-
date its effectiveness, we create a model variant using conventional
multi-task learning (MTL). In this variant, we update the model via
gradients from the combined entropy and cross-entropy loss:

{𝜓, 𝜃𝑎} ← {𝜓, 𝜃𝑎} − 𝛼∇{𝜓,𝜃𝑎 }LMTL (𝜓, 𝜃𝑎 ;D𝜏),

LMTL = E𝜏∼PS+ [LCE (𝜓 ;D𝜏) + 𝜆LENT (𝜓, 𝜃𝑎 ;D𝜏)] .
Furthermore, we apply meta-learning on TTT and achieve a signif-
icant improvement in performance across different batch sizes, as
shown in Tab. 7. Similar to Eq. 3 and Eq. 4 described in Sec. 4.2, we
adapt the inner and outer loop update to TTT respectively as:

𝜙 ′ ← 𝜙 − 𝛼∇𝜙E𝜏∼PS+
[
LR (𝜙, 𝜃𝑎 ;Dtrn

𝜏)
]
, (5)

and
{𝜓, 𝜃𝑎} ← {𝜓, 𝜃𝑎} − 𝛽∇{𝜓,𝜃𝑎 }LMeta (𝜙 ′, 𝜃𝑚, 𝜃𝑎 ;Dval

𝜏),

LMeta = E𝜏
[
LCE

(
𝜙 ′, 𝜃𝑚 ;Dval

𝜏

)
+ 𝜆LR

(
𝜙 ′, 𝜃𝑎 ;Dval

𝜏

)]
,

(6)

whereLR is the image rotation prediction loss. Noticeably, it boosts
TTT’s accuracy with the batch size of 128 by 4.11%. Another critical
observation is that without meta-learning our cascading paradigm

CIKM ’24, October 21–25, 2024, Boise, ID, USA Kien X. Nguyen, Fengchun Qiao, and Xi Peng

exhibits a poor performance for small batch sizes and has to rely on
sufficient data statistics to yield a decent accuracy. Results demon-
strate the effectiveness of meta-learning in adapting to few samples.

6.5 Uncertainty Quantification
In our approach, we use entropy as the self-supervised loss, which is
used to quantify the uncertainty. To investigate the relationship be-
tween uncertainty and classification error, we analyze the evolution
of entropy and error. Results are shown in Fig. 4. In Fig. 4 (left), we
note that both entropy and error decrease when the model adapts
to more samples of the target domain. In Fig. 4 (right), we can see
that both entropy and error increase with the level of severity. En-
tropy shows consistent trends with the classification error in both
cases. The results demonstrate that entropy can reflect the model’s
uncertainty with respect to target domains as well as measure the
distributional distance between the source and target domain.

2000 4000 6000 8000 10000
No. of Test Samples

22.5

23.0

23.5

24.0

24.5

25.0

Er
ro

r (
%

)

1.6

1.8

2.0

2.2

2.4

En
tro

py

Error
Entropy
Error
Entropy

1 2 3 4 5
Level of Corruption Severity

13

15

17

19

21

23

Er
ro

r (
%

)

1.0

1.2

1.4

1.6

1.8

2.0

En
tro

py
Error
Entropy
Error
Entropy

Figure 4: Uncertainty quantification on CIFAR-10-C. Entropy
and error after adapting to different numbers of test samples
(left) and different levels of corruption severity (right). En-
tropy shows consistent trends with the classification error.

7 CONCLUSION
We proposed a cascading paradigm for continual test-time adapta-
tion. In contrast to the parallel paradigmwhich only enables feature
updates, the cascade paradigm synchronouslymodulates the feature
extractor and classifier at test-time, mitigating the mismatch be-
tween them and enabling long-term model adaptation. To minimize
the interference between the main and self-supervised tasks, we
propose a meta-learning framework for model pre-training to align
the gradients between the supervised and self-supervised losses.
Moreover, the meta-learning framework facilitates fast adaptation
to target distributions using limited unlabelled data. Extensive ex-
periments as well as ablation studies demonstrate the superiority
of our approach on a range of tasks including image classification,
text classification, and speech recognition.

ACKNOWLEDGMENTS
This work is supported by the National Science Foundation through
the Faculty Early Career Development Program (NSF CAREER)
Award NSF-IIS-2340074 and the Department of Defense under the
Defense Established Program to Stimulate Competitive Research
(DoD DEPSCoR) Award.

A IMPLEMENTATION DETAILS

Weprovide the details of network architectures used for the three
modalities in our experiments. Following Fig. 1, we will describe the
design in terms of the feature extractor𝜙 , the main classifier 𝜃𝑚 and
the auxiliary classifier 𝜃𝑎 for easy interpretation. All experiments
are conducted on a single GeForce RTX 2080 Ti GPU with 12G
memory.

A.1 Image
A.1.1 CIFAR-10/100-C. We use ResNet-26 [12] as the backbone.
The input dimension is 3 × 32 × 32.

𝜙 : The first layer of the model contains a 3×3 convolution (Conv)
layer with 16 output channels. The input is then passed through
three ResNet layers, each having four basic blocks. Each basic block
consists of two Conv 3×3 layers with the same number of channels.
The number of channels for each ResNet layer is {16, 32, 64}. Each
Conv is followed by batch normalization (BN) and a rectifier linear
unit (ReLU). After all the Conv layers, the network produces a
feature map of size 64 × 8 × 8, reduced to 64 × 1 × 1 after pooling.

𝜃𝑚 : The feature map is flattened and fed into a fully connected
(FC) layer of size 10/100 to generate the logits before applying
Softmax for the final prediction.

𝜃𝑎 : We then append a two-layer FC network with size {64, 10/100}
that take the logits from 𝜃𝑚 as the input.

A.1.2 Tiny-ImageNet-C. We use ResNet-34 [12] as the backbone.
The input is resized to 3 × 224 × 224.

𝜙 : The module follows the official PyTorch [33] implementation.
𝜃𝑚 : The feature map is flattened and fed into an FC layer of size

200 to generate the logits before applying the softmax activation
function for the final prediction.

𝜃𝑎 : We then append a two-layer FC network with size {1024, 200}
that take the logits from 𝜃𝑚 as the input.

We use the Stochastic Gradient Descent optimizer with Nesterov
momentum [41] and set the batch size to 32 for CIFAR-10/100-C and
64 for Tiny-ImageNet-C. During pre-training, the initial learning
rate is 0.001 with a linear decay and the number of epochs is 75.
During adaptation, the learning rate is set to 0.001.

A.2 Text
We employ four data augmentations: (1) Synonym replacement:
randomly choose words from the sentence that are not stop words
and replace each of them with one of their synonyms chosen at
random; (2) Random insertion: find a random synonym of a ran-
dom word in the sentence that is not a stop word and insert that
synonym into a random position in the sentence; (3) Random swap:
randomly choose a pair of words in the sentence and swap their
positions; (4) Random deletion: randomly remove each word in the
sentence with a certain probability. For all augmentations, we use
the hyper-parameters from [48]. We use a simple FC network. Raw
text samples are first converted into the mSDA [6] representation.

𝜙 : The mSDA vector is then fed into two FC layers with the
hidden dimensions of 1024 and 512.

𝜃𝑚 : The output feature is then passed into an FC layer of size 2
and a softmax layer for binary prediction.

𝜃𝑎 : Another FC layer of size 2 is appended to 𝜃𝑚 .

Adaptive Cascading Network for Continual Test-Time Adaptation CIKM ’24, October 21–25, 2024, Boise, ID, USA

Table 8: Results (%) on CIFAR-10-C with corruption level ranging from 1 to 4 following the instantaneously changing setup.
Models are pre-trained on the original CIFAR-10 and continually adapted to a sequence of corruptions with a batch size of 32.
Our method significantly outperforms other baselines in online error E(𝜓), average accuracyA(𝜓), and forward transfer F (𝜓).

Level Method 𝑡 E(𝜓) ↓ A(𝜓) ↑ F (𝜓) ↑gauss shot impul defoc glass motn zoom snow frost fog brit contr elast pixel jpeg

4

ERM 68.23 57.38 54.03 13.99 66.91 27.14 20.42 29.06 35.58 11.44 9.86 12.11 27.59 57.57 32.91 34.95 65.05 -
AdaBN 37.13 32.78 32.83 15.53 51.74 22.21 19.08 27.53 25.37 15.61 11.96 15.95 26.26 24.18 32.14 26.02 73.98 -
TTT 36.94 24.67 30.79 20.42 40.74 25.44 17.95 27.31 18.49 14.97 12.64 15.35 22.18 19.65 21.58 23.27 73.09 0.13
Tent 27.58 20.17 23.50 14.18 37.28 19.16 15.77 23.20 19.59 14.39 12.77 14.18 21.87 17.61 21.61 20.19 79.31 -1.55
CoTTA 26.47 23.80 26.69 18.61 43.18 25.55 24.70 28.05 26.82 25.11 17.67 31.18 36.98 31.83 35.06 28.11 63.32 -12.35

Ours 25.64 21.43 25.54 12.08 40.49 16.27 14.41 21.38 17.36 13.08 10.01 13.07 20.05 17.97 22.62 19.43 80.65 -0.06

3

ERM 62.71 49.81 30.51 11.30 55.19 27.97 17.07 26.83 33.17 10.01 9.62 10.73 16.60 33.55 28.99 28.27 71.73 -
AdaBN 34.24 29.07 24.69 13.14 39.59 22.09 16.97 25.50 23.81 13.80 11.94 14.39 18.48 18.28 29.93 22.39 77.61 -
TTT 35.07 22.45 24.02 14.71 30.25 25.08 16.67 23.46 18.01 12.64 11.19 12.86 15.42 15.00 19.59 19.82 78.23 1.99
Tent 25.25 17.92 18.23 11.83 27.75 18.52 14.49 19.64 18.37 12.86 11.84 12.89 15.55 14.90 20.27 17.35 82.41 -1.11
CoTTA 24.75 21.55 21.01 15.33 31.85 24.39 22.25 24.67 25.55 20.31 16.36 25.01 29.41 25.81 31.79 24.00 68.89 -10.45

Ours 23.47 18.85 17.80 9.97 28.74 16.51 12.86 18.84 17.06 11.18 9.76 11.48 14.24 13.81 20.76 16.35 83.64 -0.26

2

ERM 46.90 28.94 21.62 9.54 56.80 19.92 14.27 31.57 21.03 9.54 9.21 10.00 14.29 24.50 25.88 22.93 77.07 -
AdaBN 27.66 21.47 20.29 11.95 38.96 17.88 15.02 25.55 18.75 12.61 11.76 13.24 17.00 16.30 26.68 19.67 80.33 -
TTT 29.04 16.88 21.81 11.52 31.61 20.59 14.72 23.47 15.46 11.06 10.29 11.25 14.65 13.73 18.51 17.64 81.74 2.68
Tent 21.22 14.21 15.33 10.49 27.98 15.44 12.79 19.53 14.98 11.51 10.95 11.69 14.86 13.50 17.80 15.49 85.76 -0.42
CoTTA 20.58 16.33 17.67 13.29 31.33 20.23 19.69 23.14 21.12 17.41 15.46 21.03 24.92 23.51 29.21 20.99 72.15 -9.64

Ours 19.48 14.43 15.14 9.65 28.36 13.73 11.37 18.13 13.87 10.24 9.35 10.84 13.13 12.79 18.98 14.63 85.42 -0.42

1

ERM 27.70 19.21 15.06 8.80 59.08 13.64 13.44 17.35 14.61 8.90 8.83 9.00 14.37 13.32 17.98 17.42 82.58 -
AdaBN 20.42 17.93 15.20 11.69 38.83 14.90 14.51 17.44 16.05 11.83 11.65 12.01 17.22 14.37 20.79 16.99 83.01 -
TTT 23.69 14.64 17.01 9.90 33.45 15.58 14.21 16.24 11.77 9.98 9.57 9.81 13.31 11.72 15.18 15.07 85.45 3.61
Tent 16.10 12.54 12.37 9.70 26.92 13.08 12.32 14.19 12.21 10.31 10.32 10.44 14.71 11.51 14.38 13.41 86.72 0.09
CoTTA 15.95 14.74 14.41 12.07 30.40 16.58 17.82 17.47 17.72 15.41 14.63 16.67 24.28 20.19 24.07 18.16 76.26 -7.72

Ours 14.97 12.73 12.12 9.45 28.98 11.51 11.26 13.22 11.70 9.67 9.46 9.88 13.79 11.39 14.99 13.01 86.87 -0.75

We append a BN layer to each hidden layer. We use Adam [17]
to optimize the model for 1000 iterations, and the initial learning
rate 𝜂0 = 10−4. We adopt the inverse-decay strategy of DANN
[51], where the learning rate changes by 𝜂𝑝 =

𝜂0
(1+𝜔𝑝)𝜙 , 𝜔 = 10,

𝜙 = 0.75, and 𝑝 is the progress ranging from 0 to 1. Similar to image
classification, the batch size is 32, simulating the online setting.

A.3 Speech
In Google Commands [47], the range of “amplitude change” is
(0.7,1.1). Themaximum scales of “pitch change”, “background noise”,
and “stretch” are 0.2, 0.45, and 0.2, respectively. The maximum shift
of “time shift” is 8. For audio augmentation, we leverage the fol-
lowing three operations: (1) Gain: multiply audio by a random
amplitude factor to lower or raise volume; (2) High-pass filtering:
apply parameterized filter steepness to input audio; (3) Impulse re-
sponse: convolve audio with a randomly selected impulse response.
The mel-spectrogram features of dimension 1× 32× 32 are fed into
LeNet [22] as the 1-channel image.

𝜙 : The original image is fed into two 5 × 5 Conv layers with the
channels of 6 and 16, outputing a feature of dimension 16 × 5 × 5.

𝜃𝑚 : The feature then go through two FC layers with the size
of 120 and 84, respectively. The output is a 30-dimensional vector
before applying softmax to predict the spoken word.

𝜃𝑎 : An FC layer of size 30 follows 𝜃𝑚 .
We append a BN layer to each Conv layer. Models are trained

using SGD with a learning rate of 0.1 linearly reduced to 0.001 for
50 epochs.

Table 9: Average time taken to adapt to each corruption on
CIFAR-10/100-C and Tiny-ImageNet-C.

Methods CIFAR-10-C CIFAR-100-C Tiny-ImageNet-C
CoTTA 24 sec 36 sec 175 sec
Ours 7 sec 7 sec 19 sec

B ADDITIONAL RESULTS
We report the results on CIFAR-10-C in the instantaneously chang-
ing setup on severity levels 4 to 1 (Tab. 8). We use the same baselines
as in Sec. 6 of the main paper: ERM [42], AdaBN [24], TTT [40],
Tent [45], and CoTTA [46]. Overall, our method consistently outper-
forms others in terms of E(𝜓) andA(𝜓) across the four corruption
severity levels. Notably, CoTTA displays a substantial loss in both
F (𝜓) possibly due to two reasons. First, the error accumulation
due to insufficient statistics (i.e., small batch size) deteriorates the
model performance over time, leading to the incapability to transfer
past domains’ knowledge to the current. Second, by updating all
the parameters, CoTTA suffers from catastrophic forgetting since
the model overfits to the data stream. Experiments show that only
updating a portion of the learnable parameters helps retain past
knowledge, thus avoiding forgetting.

C INFERENCE TIME
Different from CoTTA which updates all the parameters of the fea-
ture extractor, our method only updates BN parameters. Therefore,
our methods are an order of magnitude faster than CoTTA (Tab. 9).

CIKM ’24, October 21–25, 2024, Boise, ID, USA Kien X. Nguyen, Fengchun Qiao, and Xi Peng

REFERENCES
[1] Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars. 2017. Expert gate:

Lifelong learning with a network of experts. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 3366–3375.

[2] Yogesh Balaji, Swami Sankaranarayanan, and Rama Chellappa. 2018. Metareg:
Towards domain generalization using meta-regularization. In NeurIPS. 998–1008.

[3] Alexander Bartler, Andreas Bühler, Felix Wiewel, Mario Döbler, and Binh Yang.
2021. MT3: Meta Test-Time Training for Self-Supervised Test-Time Adaption.
In International Conference on Artificial Intelligence and Statistics. https://api.
semanticscholar.org/CorpusID:232417890

[4] Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. 2006. Anal-
ysis of representations for domain adaptation. Advances in neural information
processing systems 19 (2006).

[5] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elho-
seiny. 2018. Efficient Lifelong Learning with A-GEM. In International Conference
on Learning Representations.

[6] Minmin Chen, Zhixiang Xu, Kilian QWeinberger, and Fei Sha. 2012. Marginalized
denoising autoencoders for domain adaptation. In ICML. 1627–1634.

[7] Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš
Leonardis, Gregory Slabaugh, and Tinne Tuytelaars. 2021. A continual learning
survey: Defying forgetting in classification tasks. IEEE transactions on pattern
analysis and machine intelligence 44, 7 (2021), 3366–3385.

[8] Qi Dou, Daniel Coelho de Castro, Konstantinos Kamnitsas, and Ben Glocker.
2019. Domain generalization via model-agnostic learning of semantic features.
In NeurIPS.

[9] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-
learning for fast adaptation of deep networks. In ICML.

[10] Yaroslav Ganin and Victor Lempitsky. 2015. Unsupervised Domain Adaptation
by Backpropagation. In ICML. 1180–1189.

[11] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining
and harnessing adversarial examples. In International Conference on Learning
Representations.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In CVPR. 770–778.

[13] Dan Hendrycks and Thomas Dietterich. 2019. Benchmarking neural network
robustness to common corruptions and perturbations. ICLR (2019).

[14] Dan Hendrycks, Norman Mu, Ekin D. Cubuk, Barret Zoph, Justin Gilmer, and
Balaji Lakshminarayanan. 2020. AugMix: A Simple Data Processing Method to
Improve Robustness and Uncertainty. ICLR (2020).

[15] Judy Hoffman, Trevor Darrell, and Kate Saenko. 2014. ContinuousManifold Based
Adaptation for Evolving Visual Domains. 2014 IEEE Conference on Computer
Vision and Pattern Recognition (2014), 867–874. https://api.semanticscholar.org/
CorpusID:10105727

[16] Zhipeng Huang, Zhizheng Zhang, Cuiling Lan, Wenjun Zeng, Peng Chu,
Quanzeng You, Jiang Wang, Zicheng Liu, and Zheng-jun Zha. 2022. Lifelong
unsupervised domain adaptive person re-identification with coordinated anti-
forgetting and adaptation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 14288–14297.

[17] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Opti-
mization. In arXiv:1412.6980 [cs.LG].

[18] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume
Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka
Grabska-Barwinska, et al. 2017. Overcoming catastrophic forgetting in neural
networks. Proceedings of the national academy of sciences 114, 13 (2017), 3521–
3526.

[19] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

[20] Qicheng Lao, Xiangxi Jiang, MohammadHavaei, and Yoshua Bengio. 2021. A Two-
Stream Continual Learning System With Variational Domain-Agnostic Feature
Replay. IEEE Transactions on Neural Networks and Learning Systems 33 (2021),
4466–4478. https://api.semanticscholar.org/CorpusID:232113812

[21] Y. Le and X. Yang. 2015. Tiny ImageNet Visual Recognition Challenge.
[22] Yann Lecun et al. 1998. Gradient-Based Learning Applied to Document Recogni-

tion. Proc. IEEE 86, 11 (1998).
[23] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M. Hospedales. 2017. Learning

to Generalize: Meta-Learning for Domain Generalization. In AAAI Conference on
Artificial Intelligence. https://api.semanticscholar.org/CorpusID:1883787

[24] Yanghao Li, Naiyan Wang, Jianping Shi, Xiaodi Hou, and Jiaying Liu. 2018. Adap-
tive Batch Normalization for practical domain adaptation. Pattern Recognit. 80
(2018), 109–117.

[25] Yanghao Li, NaiyanWang, Jianping Shi, Jiaying Liu, and Xiaodi Hou. 2016. Revisit-
ing Batch Normalization For Practical Domain Adaptation. ArXiv abs/1603.04779
(2016). https://api.semanticscholar.org/CorpusID:5069968

[26] Zhizhong Li and Derek Hoiem. 2017. Learning without forgetting. IEEE transac-
tions on pattern analysis and machine intelligence 40, 12 (2017), 2935–2947.

[27] Jian Liang, Dapeng Hu, and Jiashi Feng. 2020. Do we really need to access the
source data? source hypothesis transfer for unsupervised domain adaptation. In

International Conference on Machine Learning. PMLR, 6028–6039.
[28] Hong Liu, Mingsheng Long, Jianmin Wang, and Yu Wang. 2020. Learning to

Adapt to Evolving Domains. In Neural Information Processing Systems. https:
//api.semanticscholar.org/CorpusID:227275334

[29] Yuejiang Liu, Parth Kothari, Bastien van Delft, Baptiste Bellot-Gurlet, Taylor
Mordan, and Alexandre Alahi. 2021. Ttt++: When does self-supervised test-time
training fail or thrive? NeurIPS (2021).

[30] Arun Mallya and Svetlana Lazebnik. 2018. Packnet: Adding multiple tasks to
a single network by iterative pruning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition. 7765–7773.

[31] Michael McCloskey and Neal J Cohen. 1989. Catastrophic interference in con-
nectionist networks: The sequential learning problem. In Psychology of learning
and motivation. Vol. 24. Elsevier, 109–165.

[32] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen, Shijian Zheng, Peilin
Zhao, and Mingkui Tan. 2022. Efficient test-time model adaptation without
forgetting. In International conference on machine learning. PMLR, 16888–16905.

[33] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library. In Advances in Neural Information Processing Systems 32. Curran
Associates, Inc., 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf

[34] Mihir Prabhudesai, Anirudh Goyal, Sujoy Paul, Sjoerd Van Steenkiste, Mehdi SM
Sajjadi, Gaurav Aggarwal, Thomas Kipf, Deepak Pathak, and Katerina Fragki-
adaki. 2023. Test-time adaptation with slot-centric models. In International
Conference on Machine Learning. PMLR, 28151–28166.

[35] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H
Lampert. 2017. icarl: Incremental classifier and representation learning. In Pro-
ceedings of the IEEE conference on Computer Vision and Pattern Recognition. 2001–
2010.

[36] Mohammad Rostami. 2021. Lifelong domain adaptation via consolidated internal
distribution. Advances in Neural Information Processing Systems 34 (2021), 11172–
11183.

[37] Jürgen Schmidhuber. 1987. Evolutionary principles in self-referential learning.
Ph. D. Dissertation. Technische Universität München.

[38] Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bringmann, Wieland Bren-
del, and Matthias Bethge. 2020. Improving robustness against common cor-
ruptions by covariate shift adaptation. ArXiv abs/2006.16971 (2020). https:
//api.semanticscholar.org/CorpusID:220266097

[39] Peng Su, Shixiang Tang, Peng Gao, Di Qiu, Ni Zhao, and Xiaogang Wang. 2020.
Gradient Regularized Contrastive Learning for Continual Domain Adaptation.
In AAAI Conference on Artificial Intelligence. https://api.semanticscholar.org/
CorpusID:220793718

[40] Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz
Hardt. 2020. Test-Time Training with Self-Supervision for Generalization under
Distribution Shifts. In Proceedings of the 37th International Conference on Machine
Learning (Proceedings of Machine Learning Research, Vol. 119), Hal Daumé III and
Aarti Singh (Eds.). PMLR, 9229–9248. https://proceedings.mlr.press/v119/sun20b.
html

[41] Ilya Sutskever, James Martens, George E. Dahl, and Geoffrey E. Hinton. 2013. On
the importance of initialization and momentum in deep learning. In ICML.

[42] Vladimir Vapnik. 1998. Statistical learning theory.
[43] Tom Véniat, Ludovic Denoyer, and Marc’Aurelio Ranzato. 2021. Efficient

Continual Learning with Modular Networks and Task-Driven Priors. ArXiv
abs/2012.12631 (2021).

[44] Riccardo Volpi, Diane Larlus, and Grégory Rogez. 2021. Continual adaptation of
visual representations via domain randomization and meta-learning. In CVPR.

[45] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno A. Olshausen, and Trevor
Darrell. 2021. Tent: Fully Test-Time Adaptation by Entropy Minimization. In
International Conference on Learning Representations. https://api.semanticscholar.
org/CorpusID:232278031

[46] Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai. 2022. Continual test-time
domain adaptation. In CVPR.

[47] Pete Warden. 2018. Speech commands: A dataset for limited-vocabulary speech
recognition. arXiv preprint arXiv:1804.03209 (2018).

[48] Jason Wei and Kai Zou. 2019. EDA: Easy Data Augmentation Techniques for
Boosting Performance on Text Classification Tasks. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP).
6382–6388.

[49] Markus Wulfmeier, Alex Bewley, and Ingmar Posner. 2018. Incremental adver-
sarial domain adaptation for continually changing environments. In 2018 IEEE
International conference on robotics and automation (ICRA). IEEE, 4489–4495.

[50] Sergey Zagoruyko and Nikos Komodakis. 2016. Wide Residual Networks. ArXiv
abs/1605.07146 (2016). https://api.semanticscholar.org/CorpusID:15276198

https://api.semanticscholar.org/CorpusID:232417890
https://api.semanticscholar.org/CorpusID:232417890
https://api.semanticscholar.org/CorpusID:10105727
https://api.semanticscholar.org/CorpusID:10105727
https://api.semanticscholar.org/CorpusID:232113812
https://api.semanticscholar.org/CorpusID:1883787
https://api.semanticscholar.org/CorpusID:5069968
https://api.semanticscholar.org/CorpusID:227275334
https://api.semanticscholar.org/CorpusID:227275334
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://api.semanticscholar.org/CorpusID:220266097
https://api.semanticscholar.org/CorpusID:220266097
https://api.semanticscholar.org/CorpusID:220793718
https://api.semanticscholar.org/CorpusID:220793718
https://proceedings.mlr.press/v119/sun20b.html
https://proceedings.mlr.press/v119/sun20b.html
https://api.semanticscholar.org/CorpusID:232278031
https://api.semanticscholar.org/CorpusID:232278031
https://api.semanticscholar.org/CorpusID:15276198

Adaptive Cascading Network for Continual Test-Time Adaptation CIKM ’24, October 21–25, 2024, Boise, ID, USA

[51] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.
2017. Understanding deep learning requires rethinking generalization. In ICLR.

[52] Hao Zhao, Yuejiang Liu, Alexandre Alahi, and Tao Lin. 2023. On Pitfalls of
Test-Time Adaptation. arXiv:2306.03536 [cs.LG]

https://arxiv.org/abs/2306.03536

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Method
	4.1 Cascading Paradigm
	4.2 Model Pre-training

	5 Theoretical Analysis
	6 Experiments
	6.1 Image Classification
	6.2 Text Classification
	6.3 Speech Recognition
	6.4 Ablation Study
	6.5 Uncertainty Quantification

	7 Conclusion
	Acknowledgments
	A Implementation Details
	A.1 Image
	A.2 Text
	A.3 Speech

	B Additional Results
	C Inference Time
	References

