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ABSTRACT
In this paper, we present a conceptually simple, yet power-
ful method for image recognition. The method, called Coop-
erative Dynamic Convolution (CoConv), introduces a coop-
erative learning of dynamic convolution from multiple con-
volutional experts. CoConv can be used as a substitute for
the traditional static convolution, and can be seamlessly inte-
grated in various visual models. Moreover, CoConv is easy
to train with only a minimal computational overhead intro-
duced in the inference phase. CoConv is trained by using
multiple convolutional experts simultaneously, and the con-
volutional weights are merged by a weighted summation be-
fore convolutional operations for efficiency during inference.
Results from extensive experiments show that CoConv leads
to consistent improvement for image classification on various
datasets, independent of the choice of the base convolutional
network. Remarkably, CoConv improves the top-1 classifica-
tion accuracy of ResNet18 by 3.06% on ImageNet. The code
is available at: https://github.com/Nyquixt/CoConv.

Index Terms— Convolutional Neural Networks, Dy-
namic Convolution, Cooperative Convolutional Experts, Im-
age Recognition, Computer Vision.

1. INTRODUCTION

The past few years has witnessed a dramatic performance im-
provement of convolutional neural networks (CNNs) in com-
puter vision, multimedia, and virtual reality. To further en-
hance the capability of CNNs, more and more layers and/or
design mechanisms are used, which make CNNs more com-
plicated, such as VGG16 [1], ResNet [2] and DenseNet [3].
With more learnable layers added, a model is able to extract
deeper features, exhibiting powerful representation ability.
Meanwhile, mechanisms, such as attention mechanism [4, 5],
are also explored in CNN design. By adding a lightweight
attention module, a CNN model is able to emphasize impor-
tant features while suppressing trivial ones, which further im-
proves the performance. While both strategies are instrumen-
tal, there is a lack of deep delving into the construction of

Fig. 1: Difference between static (Left) and dynamic
(Right) convolutions. In static (traditional) convolution, the
weights and input images are mutually uncorrelated. In dy-
namic convolution, the weights are effected or partially af-
fected by the input images.

learnable weights in convolutional layers, which we observe
to be imperative for the performance of CNNs.

In a traditional CNN model, the weights in each learnable
layer are learnt from the entire training set, and fixed after the
training phase. Namely, in the course of inference, the static
weights in pre-trained models and the testing images are un-
correlated. While the property of uncorrelatedness could be
considered as generalization, we emphasize that a dynamic
weight construction, where the weights are conditionally re-
lated to the input images, is more adaptive and tailored to
achieve better performance with a minimal extra cost. Fig-
ure. 1 illustrates the difference.

In this paper, we present a Dynamic Cooperative Con-
volution, (CoConv), where a traditional convolution is dis-
entangled into several standard convolutional experts and the
weights are partially dependent on the input feature maps. To
adaptively and dynamically combine the weights in convolu-
tional experts, we further design a lightweight channel-wise
routing module, which generates a proper weight for each
channel in every expert based on the input features. Note
that the training and inference phrases of our CoConv are
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slightly different. In the training phase, all the experts are
trained jointly, and cooperatively generate the feature maps
for the next layer. CoConv enjoys the advantages of over-
parameterization [6]. Notice that such a manner would in-
troduce more parameters and computations in the training
phrase, but it is not the main concern in our design (and for
most applications). We focus on the inference efficiency and
the performance improvements, which are the key points for
most scenarios. In the inference phrase, CoConv dynami-
cally computes the channel-wise weights for each expert, and
combines the weights in all convolutional experts before con-
volutional operations to reduce redundant computations. As
a result, a minimal amount of add-on operations, i.e. only
the FLOPs and parameters in calculating the channel-wise
weights, are introduced to the networks. We emphasize that
the negligible additional computation overhead required by
our CoConv is justified by its significant improvement of the
model performance.

By introducing the novel CoConv, a CNN model is able to
significantly improve its capability of feature representation
while maintaining a similar inference complexity. Results
from extensive experiments on CIFAR-100, Tiny-ImageNet
and ImageNet benchmarks have demonstrated the effective-
ness of CoConv. Empirical studies on CIFAR-100 and Tiny-
ImageNet datasets have shown that CoConv outperforms ex-
isting models when being used on various base models. Re-
markably, CoConv improves the top-1 classification accuracy
of ResNet18 by 3.06% (72.70% vs. 69.64%) on the large-
scale ImageNet dataset.

2. RELATED WORK

Deep Convolutional Neural Networks. In the past decade,
deep convolutional neural networks have shown promising re-
sults in many fields, like computer vision, multimedia tech-
nology, medical testing, etc. One of the earlier models,
AlexNet [7], employs 5 convolutional layers and 3 fully con-
nected layers to extract visual concepts. By using 3×3 filters,
VGG [1] employs 16 learnable layers for feature extraction,
providing a deeper feature representation. However, as CNNs
go deeper, a critical issue arises, that is with an increasing
network depth, the performance gets saturated and sometimes
even degraded in training and inference [2]. To mitigate this
issue, ResNet [2] employs shortcut connections and DenseNet
[3] connects each layer with every other layer, to facilitate in-
formation to flow between layers.

Although these deeper networks may achieve a better ac-
curacy, they tend to be very complex and computationally ex-
pensive. Consequently, researchers are developing smaller,
more efficient networks. MobileNet [8, 9] achieves this
goal through the use of depth-wise separable convolutions.
Another efficient network, ShuffleNet [10], uses point-wise
group convolutions and channel shuffle to reduce computa-
tion cost while preserving a comparable accuracy. Recently,

neural architecture searching has shown promising results in
network design [11, 12].
Multi-Branch Operations. Since Inception [13], a myriad
of multi-branch networks have been developed, each aggre-
gating features generated by multiple branches to produce a
compositive representation. An example of a network with
a multi-branch architecture is ResNet [2] which consists of
two branches. The output of the shortcut connection branch
that performs identity mapping is combined with the output
of the other branch. Built on ResNet’s structure, ResNeXt
[14] increases the cardinality (the set of transformations)
and uses grouped convolutions whose outputs are concate-
nated to produce a final output. Differently, Inception series
[13, 15] consider the feature aggregation by multiple hetero-
geneous branches. Each Inception module consists of multi-
ple branches with different filter sizes as well as a max pool-
ing branch whose outputs are concatenated.

In this paper, we leverage the advantages of multiple
branches for enhanced feature representations, while intro-
ducing a minimal computation overhead.
Dynamic Convolution Unlike static convolutional operations
where the kernels are fixed, the kernels in dynamic convolu-
tions are closely related to the inputs, leading to flexible yet
favorable convolutional operations. An example of dynamic
convolution is CondConv [16], which leverages multiple con-
volutional paths to extract discriminative features, and em-
ploys a lightweight attention module to dynamically adjust
the weights of each path based on the input features. DY-
CNN [17] explores a same strategy and replaces the Sigmoid
function with Softmax to constrain that the sum of attention
outputs should be 1. Different from the existing works, our
method follows the stream and provides a more delicate de-
sign by leveraging the channel-wise operation and a multi-
scale feature representation.

3. DYNAMIC CONVOLUTION

The framework of conditionally parameterized convolution
(CondConv) [16] consists of n convolution experts, scaled by
an n-dimensional routing vector α ∈ Rn, which is depen-
dent on the input features and helps make the convolution
layer dynamic. Let the weights in n convolution experts be
W1, W2, ..., Wn ∈ RC′×C×kh×kw , where C ′ is the num-
ber of out channels, C is the number of the feature channels
and kh × kw indicates the kernel shape. The convolutional
weights in each expert are scaled by the corresponding atten-
tion value, and then aggregated as the final unified weights,
which can be formulated as

W =

n∑
i=1

αiWi. (1)

Equation (1) builds the foundation for convolution fusion.
Let ~ denote the convolutional operation; the traditional con-
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Fig. 2: The framework of CoConv. The routing module is depicted on the right. ⊗ represents element-wise multiplication, ⊕
denotes summation and © is concatenation.

volution can be presented as Y = W ~ X, where Y is the
output and X is the input. Considering the linearity of a con-
volutional operation, we can rewrite the convolutional opera-
tion as follows.

Y = W ~X

=

(
n∑

i=1

αiWi

)
~X (2)

=

n∑
i=1

(αiWi ~X) .

That is, the traditional convolutional operation theoretically
can be split to multiple parallel convolutional operations.
Such an property makes it possible to train multiple convo-
lutional layers in parallel, and fuse them during inference for
better efficiency [17, 18, 16].

Note that the only difference between CondConv and DY-
CNN is the generation of the routing values α for convolu-
tional experts. However, we emphasize that the capacity of
dynamic convolution is not fully explored by such a coarse
(i.e. one real-value for each expert and high-level implemen-
tation) routing design. Inspired by this, we design CoConv,
which incorporates a more elaborate design of dynamic con-
volution, to achieve better flexibility and higher performance.

4. COOPERATIVE DYNAMIC CONVOLUTION

Given an intermediate feature map X ∈ RN×C×H×W , where
N is the batch size, C denotes the number of channels
and H × W represents the spatial size, CoConv calculates
channel-wise recalibration weights for n convolutional ex-
perts based on the multi-scaled representation of X. With
the recalibration weights, all experts dynamically generate a
synthetic output in a cooperative fashion. Figure. 2 presents

the design of our CoConv. Next, we detail each component of
CoConv.

4.1. Multi-scale Feature Extraction

We re-scale a feature map X by average pooling to extract
multi-scale feature representations.

Existing studies on multiple scales [19, 20, 21] suffer from
a discrepancy between efficiency and performance. To ad-
dress this problem, we use two average poolings to extract
the global and coarse feature representations.

Specifically, we consider two scales in our design, that is
a 1 × 1 resolution to extract the global context and a 3 × 3
resolution to present a patch-wise coarse representation. The
two average poolings are deployed in parallel and executed at
the same time. We next expand the global context to a size
of 3 × 3 to match the resolution. The two outputs are con-
catenated to produce a new feature map X′ ∈ RN×2C×3×3,
where 2C is the number of channels in the generated feature
map. By doing so, we efficiently extract multi-scale feature
representations with a negligible computation overhead.

4.2. Depth-wise Separable Block

After the multi-scale feature representation X′ is extracted,
we calculate the recalibration weights by using a depth-wise
separable block. We aim to achieve an embedding f (X′),
from a feature map X′ to a recalibration weight α, such that
each channel in a convolutional expert can be dynamically re-
calibrated based on the input. To achieve this goal, we first
squeeze the channel dimension of X′ by a factor of 16 us-
ing a point-wise convolution, which significantly reduces the
computation complexity of embedding f (X′). To fully lever-
age the advantages of multi-scale representations, we next
gather the spatial information by using a learnable linear com-
bination for each channel. After that, the embedding vector
is transformed to a new vector α with a channel dimension
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n × C ′, where n is the number of convolutional experts and
C ′ is the output channel dimension. We reshape α and spilt it
to n sub-vectors, where each one provides channel-wise rout-
ing weight for the corresponding convolutional expert.

4.3. Channel-wise Attention

In order to enhance a model’s generalization and perfor-
mance, we employ the attention mechanism on the channel
dimension of each expert, instead of scaling the entire ex-
pert by the same weight. For each αi ∈ RC′

, we recalibrate
the weight Wi of the ith convolutional expert by computing
σ (αi) ⊗Wi, where ⊗ denotes element-wise multiplication.
We choose the sigmoid function σ(·) to scale the routing val-
ues to a range of (0, 1). Hence, the fused convolution opera-
tion during inference is expressed as

Y =

(
n∑

i=1

σ (αi)⊗Wi

)
~X. (3)

In our implementation, we set the number of experts n to
4 by default. In addition, we include a batch normalization
(BN) layer in each convolutional expert to achieve a better
feature representation.

5. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our CoConv
for image recognition tasks on three datasets: CIFAR-100
[22], Tiny-ImageNet [23], and ImageNet [24]. To study the
generalization of CoConv, we integrate it into multiple base
CNN architectures, including AlexNet [7], ResNet [2], and
MobileNetV2 [9]. All our implementations are based on Py-
Torch [25]. We have conducted extensive experiments and
ablation studies.

5.1. Performance on CIFAR-100 and Tiny-ImageNet

In this set of experiments, we compare the performance
of CoConv with that of DY-CNN [17] and CondConv [16]
(which also include dynamic convolution) on CIFAR-100 and
Tiny-ImageNet.

CIFAR-100 consists of 60K images (each with 32×32
pixels) belonging to 100 classes with 600 images in each
class. Tiny-ImageNet includes all the images from ImageNet
in a lower resolution (64× 64 pixels). We train each model on
the two datasets using the stochastic gradient descent method
with a momentum as 0.9 and and a weight decaying factor as
5e−4. Each model is trained for 90 epochs with a mini-batch
size of 128. We initialize the learning rate as 0.01, and de-
crease it by a factor of 10 every 30 epochs. Following the
practice in [2], we horizontally flip the images with a proba-
bility of 50%. Table 1 and Table 2 present the results.

In the tables, we can see our CoConv consistently out-
performs other methods on different base CNN architectures,

Table 1: Classification performance (%) on CIFAR-100. The
number of experts n is 4.

AlexNet ResNet18 MobileNetV2

Original 58.63 71.87 69.10
CondConv 58.49 72.90 70.37
DY-CNN 58.42 73.08 69.32
CoConv 58.98 73.48 70.89

Table 2: Classification performance (%) on Tiny-ImageNet.
The number of experts n is 4.

AlexNet ResNet18 MobileNetV2

Original 51.13 61.33 59.30
CondConv 51.51 61.19 60.58
DY-CNN 51.19 61.61 59.87
CoConv 51.93 63.25 60.42

achieving the best result in 5 out of 6 settings. Specif-
ically, CoConv outperforms the original ResNet18, Cond-
Conv, and DY-CNN counterparts by 1.92, 2.06 and 1.64, re-
spectively. The results infer that multi-scale feature extraction
and channel-wise attention introduced to the routing function
contribute to accuracy improvement, particularly for bigger
datasets with a larger input spatial size and more complex fea-
tures to generalize.

5.2. Experiments on ImageNet

In another set of experiments, we evaluate CoConv’s perfor-
mance on ImageNet [24] which is a widely used, large-scale
image classification benchmark, containing 1.28M training
images and 50K images for validation in 1000 categories. In
addition to DY-CNN and CondConv, we include several plug-
in modules in our comparison, such as SENet [4], GENet [5],
and ACNet [18].

We train each model on the ImageNet training set and
measure its single-crop (224 × 224 pixels) top-1 and top-5
accuracy on the validation set. Each model is trained for 100
epochs with 32 images per GPU (256 in a batch). The learn-
ing rate is set to 0.1 initially, and decreased by a factor of 10
every 30 epochs. For a fair comparison, the number of experts
n is 3 for DY-CNN, CondConv, and our CoConv, and BN
layer is not included in each expert. We adopt the common-
used ResNet18 as the base model.

Table 3 lists the experimental results. We can see CoConv
achieves a significant improvement over the base ResNet18
(about 3.06%), and outperforms all the competitors by a clear
margin. More specifically, when compared with other dy-
namic convolution methods, our CoConv surpasses Cond-
Conv and DY-CNN by 0.76% and 2.08% respectively. We
note CoConv introduces some more FLOPs and parameters
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Table 3: Single-cropped classification performance (%) on the ImageNet validation set.

Models Multi-conv Type Top-1 acc. Top-5 acc. FLOPs(G) Parameters(M)

ResNet18 [2] static 69.635 89.005 1.822 11.690
SE-ResNet18 [4] static 71.024 89.916 1.823 11.779
GE-ResNet18 [5] static 70.405 89.778 1.825 11.753
AC-ResNet18 [18] X static 70.779 89.676 1.822 11.690
CondConv-ResNet18 [16] X dynamic 71.935 90.239 1.822 11.701
DY-CNN-ResNet18 [17] X dynamic 70.613 89.684 1.822 12.001
CoConv-ResNet18 (ours) X dynamic 72.696 90.717 1.824 12.166

Table 4: Impact of the number of experts n on the perfor-
mance of CoConv on Tiny ImageNet.

Base model n = 2 n = 4 n = 8

CoConv-AlexNet 52.14 51.93 52.00
CoConv-ResNet18 63.08 63.25 62.57
CoConv-MobileNetV2 60.11 60.42 59.75

during inference. However, the small additional computa-
tional overhead, i.e. 0.002G FLOPs and 0.476M parameters,
from CoConv is justified by its remarkable classification ac-
curacy, i.e. 72.70% vs. 69.64%.

5.3. Ablation Studies

We conduct a series of ablation studies to analyze the internal
structure and operations of CoConv.

The Number of Experts. We first investigate how the num-
ber of experts n affects the performance of CoConv. We con-
duct the experiments on the Tiny ImageNet with a configura-
tion similar to that in Section 5.1. Table 4 presents the results
which show the best performance is achieved when the default
value n = 4 is applied. We note when a simpler architecture,
such as AlexNet, is used, the accuracy may be higher when
n = 2. Moreover, the number of experts affects the compu-
tational overhead in training (i.e. more experts lead to more
FLOPs and parameters), but not in inference.

Input Channels vs. Output Channels. We also study the
effect of applying the vector α on the input and output chan-
nel dimensions of the convolutional experts. We test the three
backbone architectures AlexNet, ResNet18 and MobileNetV2
on on CIFAR-100 and Tiny ImageNet. Table 5 lists the re-
sults. We can see applying attention on the output channel
dimension (as implemented in our default architecture) helps
CoConv perform better, especially on deeper CNN architec-
tures that include more convolutional layers.

Single Scale vs. Multi Scale. We demonstrate the effective-
ness of the multi-scaled feature extraction in our model. To
make the routing module single-scaled, we remove the aver-

Table 5: Performance (%) comparison between applying the
attention vector to the input (In) and output (Out) channel di-
mensions of convolutional experts in CoConv.

CIFAR-100 Tiny ImageNet
n = 2 n = 4 n = 2 n = 4

AlexNet
In 59.93 60.00 52.36 51.78

Out 59.46 58.98 52.14 51.93

ResNet18
In 72.52 73.29 61.67 62.15

Out 73.12 73.48 63.08 63.25

MobileNetV2
In 69.85 69.61 60.22 60.00

Out 70.76 70.89 60.11 60.42

age pooling layer of 3× 3 and transform the 3× 3 Conv layer
to 1×1. We can see from Table 6 that the multi-scaled version
of CoConv yields better results overall, specifically on more
complex backbones and on larger datasets.

Table 6: Performance (%) comparison between single-scaled
(Single) and mutil-scaled (Multi) feature extraction in Co-
Conv’s attention module, with n = 4.

CIFAR-100 Tiny ImageNet

AlexNet
Single 59.38 51.57
Multi 58.98 51.93

ResNet18
Single 72.27 62.17
Multi 73.48 63.25

MobileNetV2
Single 70.06 60.13
Multi 70.89 60.42

6. CONCLUSIONS

In this paper, we describe a novel method, CoConv, which en-
hances the feature representational ability of convolutions by
dynamically and cooperatively learning the representations
from multiple convolutional experts in parallel. CoConv in-
curs a little more computation during training, but only a min-
imal amount of extra computation in inference. Experimen-
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tal results on CIFAR-100, Tiny-ImageNet, and ImageNet all
show the outstanding performance of CoConv. In particu-
lar, CoConv improves the the top-1 accuracy of ResNet18 by
3.06% on ImageNet. This significant performance improve-
ment makes CoConv promising for various multimedia appli-
cations in practice.
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