Cross-Problem Parameter Transferability in Quantum Approximate Optimization Algorithm: A Machine Learning Approach
Published in arXiv, 2025
Abstract. Quantum Approximate Optimization Algorithm (QAOA) is one of the most promising candidates to achieve the quantum advantage in solving combinatorial optimization problems. The process of finding a good set of variational parameters in the QAOA circuit has proven to be challenging due to multiple factors, such as barren plateaus. As a result, there is growing interest in exploiting parameter transferability, where parameter sets optimized for one problem instance are transferred to another that could be more complex either to estimate the solution or to serve as a warm start for further optimization. But can we transfer parameters from one class of problems to another? Leveraging parameter sets learned from a well-studied class of problems could help navigate the less studied one, reducing optimization overhead and mitigating performance pitfalls. In this paper, we study whether pretrained QAOA parameters of MaxCut can be used as is or to warm start the Maximum Independent Set (MIS) circuits. Specifically, we design machine learning models to find good donor candidates optimized on MaxCut and apply their parameters to MIS acceptors. Our experimental results show that such parameter transfer can significantly reduce the number of optimization iterations required while achieving comparable approximation ratios.
Recommended citation: Kien X. Nguyen, Bao Bach, and Ilya Safro. "Cross-Problem Parameter Transferability in Quantum Approximate Optimization Algorithm: A Machine Learning Approach." arXiv, 2025.
Download Paper | Download Bibtex